235 research outputs found

    Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes

    Get PDF
    Plant–soil interactions, such as the coupling of plants' below-ground biomass allocation with soil organic matter (SOM) decomposition, nutrient release and plant uptake, are essential to understand the response of carbon (C) cycling to global changes. However, these processes are poorly represented in the current terrestrial biosphere models owing to the simple first-order approach of SOM cycling and the ignorance of variations within a soil profile. While the emerging microbially explicit soil organic C models can better describe C formation and turnover, at present, they lack a full coupling to the nitrogen (N) and phosphorus (P) cycles with the soil profile. Here we present a new SOM model – the Jena Soil Model (JSM) – which is microbially explicit, vertically resolved and integrated with the N and P cycles. To account for the effects of nutrient availability and litter quality on decomposition, JSM includes the representation of enzyme allocation to different depolymerisation sources based on the microbial adaptation approach as well as of nutrient acquisition competition based on the equilibrium chemistry approximation approach. Herein, we present the model structure and basic features of model performance in a beech forest in Germany. The model reproduced the main SOM stocks and microbial biomass as well as their vertical patterns in the soil profile. We further tested the sensitivity of the model to parameterisation and showed that JSM is generally sensitive to changes in microbial stoichiometry and processes

    PIN21 BUDGET IMPACT ANALYSIS OF UNIVERSAL VARICELLA VACCINATION IN GERMANY

    Get PDF

    Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints

    Get PDF
    Soils of temperate forests store significant amounts of organic matter and are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon (SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the incubation of soil and roots have been widely used together with Δ<sup>14</sup>C of total soil respiration to partition soil respiration into heterotrophic respiration (HR) and rhizosphere respiration. However, these data have not been used as joint observational constraints to determine SOC turnover times. Thus, we focus on (1) how different combinations of observational constraints help to narrow estimates of turnover times and other parameters of a simple two-pool model, the Introductory Carbon Balance Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple constraints approach allows the source/sink strength of the soil to be determined while estimating turnover times at the same time. To this end ICBM was adapted to model SOC and SO<sup>14</sup>C in parallel with litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and Howland Tower site) were used to estimate the parameters of ICBM via Bayesian calibration. Key findings are as follows: (1) the joint use of all four observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational constraints made it possible to constrain the humification factor in ICBM, which describes the fraction of the annual outflux from the young pool that enters the old pool. The Bayesian parameter estimation yielded the following turnover times (mean ± standard deviation) for SOC in the young pool: Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were 377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0) and 184 ± 42 years (Howland Tower), respectively. (2) At all three sites the multiple constraints approach was not able to determine if the soil has been losing or storing carbon. Nevertheless, the relaxed steady-state assumption hardly introduced any additional uncertainty for the other parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C data from more than one carbon pool or flux helps to better constrain SOC models

    Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of P limitation in temperate forest ecosystems

    Get PDF
    International audiencePhosphorus (P) availability affects the response of terrestrial ecosystems to environmental and climate change (e.g., elevated CO2), yet the magnitude of this effect remains uncertain. This uncertainty arises mainly from a lack of quantitative understanding of the soil biological and geochemical P cycling processes, particularly the P exchange with soil mineral surfaces, which is often described by a Langmuir sorption isotherm.We first conducted a literature review on P sorption experiments and terrestrial biosphere models (TBMs) using a Langmuir isotherm. We then developed a new algorithm to describe the inorganic P exchange between soil solution and soil matrix based on the double-surface Langmuir isotherm and extracted empirical equations to calculate the sorption capacity and Langmuir coefficient. We finally tested the conventional and new models of P sorption at five beech forest sites in Germany along a soil P stock gradient using the QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) TBM.We found that the conventional (single-surface) Langmuir isotherm approach in most TBMs largely differed from P sorption experiments regarding the sorption capacities and Langmuir coefficients, and it simulated an overly low soil P-buffering capacity. Conversely, the double-surface Langmuir isotherm approach adequately reproduced the observed patterns of soil inorganic P pools. The better representation of inorganic P cycling using the double-surface Langmuir approach also improved simulated foliar N and P concentrations as well as the patterns of gross primary production and vegetation carbon across the soil P gradient. The novel model generally reduces the estimates of P limitation compared with the conventional model, particularly at the low-P site, as the model constraint of slow inorganic P exchange on plant productivity is reduced

    Implantable loop recorders in patients with unexplained syncope: Clinical predictors of pacemaker implantation

    Get PDF
    Background: Implantable loop recorders (ILR) are a valuable tool for the investigation of unexplained syncopal episodes. The aim of this retrospective single center study was to identify predictive factors for pacemaker implantation in patients with unexplained syncope who underwent ILR insertion. Methods: One hundred six patients were retrospectively analyzed (mean age 59.1 years; 47.2% male) with unexplained syncope and negative conventional testing who underwent ILR implantation. The pri- mary study endpoint was detection of symptomatic or asymptomatic bradycardia requiring pacemaker implantation.  Results: The average follow-up period after ILR implantation was 20 ± 15 months. Pacemaker im- plantation according to current guidelines was necessary in 22 (20.8%) patients, mean duration until index bradycardia was 81 ± 88 (2–350) days. Ten (45.5%) patients received a pacemaker due to sinus arrest, 7 (31.8%) patients due to third-degree atrioventricular block, 2 (9.1%) patients due to second- degree atrioventricular block and 1 (4.5%) patient due to atrial fibrillation with a slow ventricular rate. Three factors remained significant in multivariate analysis: obesity, which defined by a body mass index above 30 kg/m2 (OR: 7.39, p = 0.014), a right bundle branch block (OR: 9.40, p = 0.023) and chronic renal failure as defined by a glomerular filtration rate of less than 60 mL/min (OR: 6.42, p = 0.035). Conclusions: Bradycardia is a frequent finding in patients undergoing ILR implantation due to un- explained syncope. Obesity, right bundle branch block and chronic renal failure are independent clinical predictors of pacemaker implantation

    Prevalence of antibodies against influenza A and B viruses in children in Germany, 2008 to 2010

    Get PDF
    The prevalence of influenza A and B virus-specific IgG was determined in sera taken between 2008 and 2010 from 1,665 children aged 0-17 years and 400 blood donors in Germany. ELISA on the basis of whole virus antigens was applied. Nearly all children aged nine years and older had antibodies against influenza A. In contrast, 40% of children aged 0-4 years did not have any influenza A virus-specific IgG antibodies. Eighty-six percent of 0-6 year-olds, 47% of 7-12 year-olds and 20% of 13-17 year-olds were serologically naive to influenza B viruses. By the age of 18 years, influenza B seroprevalence reached approximately 90%. There were obvious regional differences in the seroprevalence of influenza B in Germany. In conclusion, seroprevalences of influenza A and influenza B increase gradually during childhood. The majority of children older than eight years have basal immunity to influenza A, while comparable immunity against influenza B is only acquired at the age of 18 years. Children aged 0-6 years, showing an overall seroprevalence of 67% for influenza A and of 14% for influenza B, are especially at risk for primary infections during influenza B seasons

    Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems

    Get PDF
    Phosphorus (P) availability affects the response of terrestrial ecosystems to environmental and climate change (e.g., elevated CO2), yet the magnitude of this effect remains uncertain. This uncertainty arises mainly from a lack of quantitative understanding of the soil biological and geochemical P cycling processes, particularly the P exchange with soil mineral surfaces, which is often described by a Langmuir sorption isotherm. We first conducted a literature review on P sorption experiments and terrestrial biosphere models (TBMs) using a Langmuir isotherm. We then developed a new algorithm to describe the inorganic P exchange between soil solution and soil matrix based on the double-surface Langmuir isotherm and extracted empirical equations to calculate the sorption capacity and Langmuir coefficient. We finally tested the conventional and new models of P sorption at five beech forest sites in Germany along a soil P stock gradient using the QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) TBM. We found that the conventional (single-surface) Langmuir isotherm approach in most TBMs largely differed from P sorption experiments regarding the sorption capacities and Langmuir coefficients, and it simulated an overly low soil P-buffering capacity. Conversely, the double-surface Langmuir isotherm approach adequately reproduced the observed patterns of soil inorganic P pools. The better representation of inorganic P cycling using the double-surface Langmuir approach also improved simulated foliar N and P concentrations as well as the patterns of gross primary production and vegetation carbon across the soil P gradient. The novel model generally reduces the estimates of P limitation compared with the conventional model, particularly at the low-P site, as the model constraint of slow inorganic P exchange on plant productivity is reduced.</p
    • …
    corecore