96 research outputs found
Compressibility of and (M = Rh, Ir and Co) Compounds
The lattice parameters of the tetragonal compounds CeIn and
CeIn(Rh, Ir and Co) have been studied as a function of
pressure up to 15 GPa using a diamond anvil cell under both hydrostatic and
quasihydrostatic conditions at room temperature. The addition of In
layers to the parent CeIn compound is found to stiffen the lattice as the
2-layer systems (average of bulk modulus values is 70.4 GPa) have a
larger than CeIn (67 GPa), while the 1-layer systems with the are
even stiffer (average of is 81.4 GPa). Estimating the hybridization
using parameters from tight binding calculations shows that the dominant
hybridization is in nature between the Ce and In atoms. The values of
at the pressure where the superconducting transition temperature
reaches a maximum is the same for all CeIn compounds. By
plotting the maximum values of the superconducting transition temperature
versus for the studied compounds and Pu-based superconductors, we
find a universal versus behavior when these quantities are
normalized appropriately. These results are consistent with magnetically
mediated superconductivity.Comment: Updated version resubmitted to Phys. Rev.
Incremental benefit in correlation with histology of native T1 mapping, partition coefficient and extracellular volume fraction in patients with aortic stenosis
Background: We investigated the histological correlation of native T1 maps, partition coefficient and extracellular volume fraction (ECV) using an 11 heart beat (11 HB) MOLLI for identification of overall burden of fibrosis. Methods: Ten patients (8 male, age 73 ± 7 years; all in sinus rhythm, 2 with ventricular ectopy) with severe aortic stenosis (3 with coexisting coronary artery disease) scheduled for surgical aortic valve replacement underwent CMR on a 1.5T scanner (MAGNETOM Avanto, Siemens Healthcare, Erlangen). The 11HB MOLLI sequence (Siemens investigational prototype WIP 448B) was acquired before and 15 minutes post 0.1 mmol/kg gadolinium administration. Incorporating hematocrit results from the same day. This allowed native T1 maps, partition coefficient and ECV calculation. Images were obtained twice at end diastole at basal, and twice at mid left ventricular level. The average of all measurements was used to calculate ECV using the standard formula Partition Coefficient= [(1/T1myocardium post contrast-1/T1 myocardium native)]/[(1/T1 blood post contrast-1/T1 blood native)] with x(1-HCt) for ECV. Similar regions of interest were drawn in the septum at both levels for T1 values. Intraoperatively, trucut biopsies were taken from the left ventricular apical anterior/ lateral wall through the epicardium to allow histological characterization of the full myocardial wall, and fixed in warm buffered formalin. Histological analysis of formalin-fixed paraffin-embedded, transmural myocardial biopsies of the left ventricle was performed on hematoxylin/eosin and Picrosirius red-stained 3-micron-thick sections by a blinded experienced cardiac pathologist. Images were analysed using a purpose-built software (Nikon NIS elements BR) on a NIKON Eclipse light projection microscope to determine the extent of overall and reactive interstitial fibrosis, which was expressed as collagen volume fraction (%) per square millimetre. Results: Native T1 mapping, partition coefficient and ECV all correlated with histologically measured fibrosis. However, native T1 mapping showed the least accuracy (panel A, R2 = 0.42) and ECV showed the highest accuracy (panel B, R2 = 0.83). Partition coefficient was more accurate than native T1 mapping but only very marginally less so than ECV (panel C, R2 = 0.80). Conclusions: These results suggest that native T1 mapping is less accurate than partition coefficient and ECV for overall fibrosis. Therefore, post gadolinium images to enable calculation of partition coefficient and ECV should be routinely obtained to increase accuracy
Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T1 mapping: averaging to improve precision and correlation with collagen volume fraction
Objectives: Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T1 mapping versus assessment at a single ventricular level. Materials and methods: For assessment of T1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T1, allowing calculation of partition coefficient and ECV. To assess correlation of T1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. Results: A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R2 = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T1 mapping. Conclusion: T1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T1/ECV might affect clinical management
Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development
SummaryThe impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating TÂ cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators
- …