research

Compressibility of CeMIn5Ce M In_5 and Ce2MIn8Ce_2 M In_8 (M = Rh, Ir and Co) Compounds

Abstract

The lattice parameters of the tetragonal compounds CeMMIn5_{5} and Ce2M_{2}MIn8_{8}(M=M=Rh, Ir and Co) have been studied as a function of pressure up to 15 GPa using a diamond anvil cell under both hydrostatic and quasihydrostatic conditions at room temperature. The addition of MMIn2_{2} layers to the parent CeIn3_{3} compound is found to stiffen the lattice as the 2-layer systems (average of bulk modulus values B0B_{0} is 70.4 GPa) have a larger B0B_{0} than CeIn3_{3} (67 GPa), while the 1-layer systems with the are even stiffer (average of B0B_{0} is 81.4 GPa). Estimating the hybridization using parameters from tight binding calculations shows that the dominant hybridization is fpfp in nature between the Ce and In atoms. The values of VpfV_{pf} at the pressure where the superconducting transition temperature TcT_{c} reaches a maximum is the same for all CeMMIn5_{5} compounds. By plotting the maximum values of the superconducting transition temperature TcT_{c} versus c/ac/a for the studied compounds and Pu-based superconductors, we find a universal TcT_{c} versus c/ac/a behavior when these quantities are normalized appropriately. These results are consistent with magnetically mediated superconductivity.Comment: Updated version resubmitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020