18,673 research outputs found
A multi-wavelength view of galaxy evolution with AKARI
AKARI's all-sky survey resolves the far-infrared emission in many thousands
of nearby galaxies, providing essential local benchmarks against which the
evolution of high-redshift populations can be measured. This review presents
some recent results in the resolved galaxy populations, covering some
well-known nearby targets, as well as samples from major legacy surveys such as
the Herschel Reference Survey and the JCMT Nearby Galaxies Survey. This review
also discusses the prospects for higher redshifts surveys, including strong
gravitational lens clusters and the AKARI NEP field.Comment: Accepted for Publications of the Korean Astronomical Society
(September 30, 2012 issue, volume 27, No. 3), Proceedings of the Second AKARI
conference, Legacy of AKARI: A Panoramic View of the Dusty Universe. 6 page
Key dating features for timber-framed dwellings in Surrey
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ The Vernacular Architecture Group 2013. MORE OpenChoice articles are open access and distributed under the terms of the Creative Commons Attribution License 3.0.The main component of the Surrey Dendrochronology Project is the accurate dating of 177 ‘dwellings’, nearly all by tree-ring analysis. The dates are used to establish date ranges for 52 ‘key features’, which cover many aspects of timber-framing from building type to details of carpentry. It is shown that changes of method and fashion were in many cases surprisingly rapid, almost abrupt in historical terms. Previous dating criteria for timber-framed dwellings in the county have been refined and new criteria introduced. Clusters of change from the 1440s and the 1540s are shown and some possible historical links suggested.The Heritage Lottery Fund, the Domestic Buildings Research Group (Surrey), the Surrey Archaeological Society and the historical societies of Charlwood, Farnham and Nutfield
Identifying Galaxy Mergers in Observations and Simulations with Deep Learning
Mergers are an important aspect of galaxy formation and evolution. We aim to
test whether deep learning techniques can be used to reproduce visual
classification of observations, physical classification of simulations and
highlight any differences between these two classifications. With one of the
main difficulties of merger studies being the lack of a truth sample, we can
use our method to test biases in visually identified merger catalogues. A
convolutional neural network architecture was developed and trained in two
ways: one with observations from SDSS and one with simulated galaxies from
EAGLE, processed to mimic the SDSS observations. The SDSS images were also
classified by the simulation trained network and the EAGLE images classified by
the observation trained network. The observationally trained network achieves
an accuracy of 91.5% while the simulation trained network achieves 65.2% on the
visually classified SDSS and physically classified EAGLE images respectively.
Classifying the SDSS images with the simulation trained network was less
successful, only achieving an accuracy of 64.6%, while classifying the EAGLE
images with the observation network was very poor, achieving an accuracy of
only 53.0% with preferential assignment to the non-merger classification. This
suggests that most of the simulated mergers do not have conspicuous merger
features and visually identified merger catalogues from observations are
incomplete and biased towards certain merger types. The networks trained and
tested with the same data perform the best, with observations performing better
than simulations, a result of the observational sample being biased towards
conspicuous mergers. Classifying SDSS observations with the simulation trained
network has proven to work, providing tantalizing prospects for using
simulation trained networks for galaxy identification in large surveys.Comment: Submitted to A&A, revised after first referee report. 20 pages, 22
figures, 14 tables, 1 appendi
Structural, Vibrational and Thermodynamic Properties of AgnCu34-n Nanoparticles
We report results of a systematic study of structural, vibrational and
thermodynamical properties of 34-atom bimetallic nanoparticles from the
AgnCu34-n family using model interaction potentials as derived from the
embedded atom method and in the harmonic approximation of lattice dynamics.
Systematic trends in the bond length and dynamical properties can be explained
largely on arguments based on local coordination and elemental environment.
Thus increase in the number of silver atoms in a given neighborhood introduces
a monotonic increase in bond length while increase of the copper content does
the reverse. Moreover, based on bond lengths of the lowest coordinated (6 and
8) copper atoms with their nearest neighbors (Cu atoms), we find that the
nanoparticles divide into two groups with average bond length either close to
(~ 2.58 A) or smaller (~ 2.48 A) than that in bulk copper, accompanied by
characteristic features in their vibrational density of states. For the entire
set of nanoparticles, vibrational modes are found above the bulk bands of
copper/silver. Furthermore, a blue shift in the high frequency end with
increasing number of copper atoms in the nanoparticles is traced to a shrinkage
of bond lengths from bulk values. The vibrational densities of states at the
low frequency end of the spectrum scale linearly with frequency as for single
element nanoparticles, however, the effect is more pronounced for these
nanoalloys. The Debye temperature was found to be about one third of that of
the bulk for pure copper and silver nanoparticles with a non-linear increase
with increasing number of copper atoms in the nanoalloys.Comment: 37 pages, 12 figure
"Improving the legitimacy of medicines funding decisions: A critical literature review"
Many healthcare systems globally provide publicly subsidised access to prescribed medicines. Decisions about which medicines to fund affect a range of stakeholders and it is not reasonable to expect that medicines funding decisions are supported by all stakeholder groups all the time. A more realistic aim may be for decisions to be understood and accepted as legitimate by stakeholders, however several shortcomings of existing processes make it difficult to achieve this aim. To date, the main strategy to address these shortcomings has been to increase stakeholder involvement in decision-making, either by eliciting stakeholder values or increasing stakeholder participation in decision-making. Despite these efforts, there is growing evidence that decision-makers are falling short when it comes to the perceived legitimacy of their resource allocation processes and decisions. As such, there is a pressing need for decision-makers to think seriously and creatively about ways to increase the legitimacy of their processes and to make them more acceptable to a wider range of stakeholders. In this article we summarise and critique existing literature on the legitimacy of public resource allocation processes, and make some practical suggestions for those who are concerned about this issue. Keywords: pharmaceutical funding decisions, legitimacy, stakeholder engagement, resource allocation, priority setting.NHMR
Results of winglet development studies for DC-10 derivatives
The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation
De-blending Deep Herschel Surveys: A Multi-wavelength Approach
Cosmological surveys in the far infrared are known to suffer from confusion.
The Bayesian de-blending tool, XID+, currently provides one of the best ways to
de-confuse deep Herschel SPIRE images, using a flat flux density prior. This
work is to demonstrate that existing multi-wavelength data sets can be
exploited to improve XID+ by providing an informed prior, resulting in more
accurate and precise extracted flux densities. Photometric data for galaxies in
the COSMOS field were used to constrain spectral energy distributions (SEDs)
using the fitting tool CIGALE. These SEDs were used to create Gaussian prior
estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the
extracted SPIRE flux densities were run through CIGALE again to allow us to
compare the performance of the two priors. Inferred ALMA flux densities
(F), at 870m and 1250m, from the best fitting SEDs from the
second CIGALE run were compared with measured ALMA flux densities (F) as an
independent performance validation. Similar validations were conducted with the
SED modelling and fitting tool MAGPHYS and modified black body functions to
test for model dependency. We demonstrate a clear improvement in agreement
between the flux densities extracted with XID+ and existing data at other
wavelengths when using the new informed Gaussian prior over the original
uninformed prior. The residuals between F and F were calculated. For
the Gaussian prior, these residuals, expressed as a multiple of the ALMA error
(), have a smaller standard deviation, 7.95 for the Gaussian
prior compared to 12.21 for the flat prior, reduced mean, 1.83
compared to 3.44, and have reduced skew to positive values, 7.97
compared to 11.50. These results were determined to not be significantly model
dependent. This results in statistically more reliable SPIRE flux densities.Comment: 8 pages, 7 figures, 3 tables. Accepted for publication in A&
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III: Role of particle-number projection
Starting from HFB-6, we have constructed a new mass table, referred to as
HFB-8, including all the 9200 nuclei lying between the two drip lines over the
range of Z and N > 6 and Z < 122. It differs from HFB-6 in that the wave
function is projected on the exact particle number. Like HFB-6, the isoscalar
effective mass is constrained to the value 0.80 M and the pairing is density
independent. The rms errors of the mass-data fit is 0.635 MeV, i.e. better than
almost all our previous HFB mass formulas. The extrapolations of this new mass
formula out to the drip lines do not differ significantly from the previous
HFB-6 mass formula.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.
Slip energy barriers in aluminum and implications for ductile versus brittle behavior
We conisder the brittle versus ductile behavior of aluminum in the framework
of the Peierls-model analysis of dislocation emission from a crack tip. To this
end, we perform first-principles quantum mechanical calculations for the
unstable stacking energy of aluminum along the Shockley partial
slip route. Our calculations are based on density functional theory and the
local density approximation and include full atomic and volume relaxation. We
find that in aluminum J/m. Within the Peierls-model
analysis, this value would predict a brittle solid which poses an interesting
problem since aluminum is typically considered ductile. The resolution may be
given by one of three possibilites: (a) Aluminum is indeed brittle at zero
temperature, and becomes ductile at a finite temperature due to motion of
pre-existing dislocations which relax the stress concentration at the crack
tip. (b) Dislocation emission at the crack tip is itself a thermally activated
process. (c) Aluminum is actually ductile at all temperatures and the
theoretical model employed needs to be significantly improved in order to
resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]
Effects of jamming on non-equilibrium transport times in nano-channels
Many biological channels perform highly selective transport without direct
input of metabolic energy and without transitions from a 'closed' to an 'open'
state during transport. Mechanisms of selectivity of such channels serve as an
inspiration for creation of artificial nano-molecular sorting devices and
bio-sensors. To elucidate the transport mechanisms, it is important to
understand the transport on the single molecule level in the experimentally
relevant regime when multiple particles are crowded in the channel. In this
paper we analyze the effects of inter-particle crowding on the non-equilibrium
transport times through a finite-length channel by means of analytical theory
and computer simulations
- …