14,996 research outputs found

    ERTS-1 Views the Great Lakes Area

    Get PDF
    ERTS-1 study of mesoscale atmospheric phenomena associated with Great Lake

    ERTS-1 views the Great Lakes

    Get PDF
    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Classification of n-qubit states with minimum orbit dimension

    Full text link
    The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.Comment: 15 pages, latex, revision 2, conclusion added, some proofs shortene

    The International Journal of Exercise Science: 2010 Year in Review

    Get PDF
    The International Journal of Exercise Science: 2010 Year in Revie

    Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series

    Get PDF
    The Greenland Ice Sheet Project 2 glaciochemical series (sodium, potassium, ammonium, calcium, magnesium, sulfate, nitrate, and chloride) provides a unique view of the chemistry of the atmosphere and the history of atmospheric circulation over both the high latitudes and mid‐low latitudes of the northern hemisphere. Interpretation of this record reveals a diverse array of environmental signatures that include the documentation of anthropogenically derived pollutants, volcanic and biomass burning events, storminess over marine surfaces, continental aridity and biogenic source strength plus information related to the controls on both high‐ and low‐frequency climate events of the last 110,000 years. Climate forcings investigated include changes in insolation of the order of the major orbital cycles that control the long‐term behavior of atmospheric circulation patterns through changes in ice volume (sea level), events such as the Heinrich events (massive discharges of icebergs first identified in the marine record) that are found to operate on a 6100‐year cycle due largely to the lagged response of ice sheets to changes in insolation and consequent glacier dynamics, and rapid climate change events (massive reorganizations of atmospheric circulation) that are demonstrated to operate on 1450‐year cycles. Changes in insolation and associated positive feedbacks related to ice sheets may assist in explaining favorable time periods and controls on the amplitude of massive rapid climate change events. Explanation for the exact timing and global synchroneity of these events is, however, more complicated. Preliminary evidence points to possible solar variability‐climate associations for these events and perhaps others that are embedded in our ice‐core‐derived atmospheric circulation records

    Electrodynamics of Media

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U.S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300U.S. Air Force Cambridge Research Laboratories Contract F19628-70-C -006

    Evaluation of Metabolic Stress between Jumping at Different Cadences on the Digi-Jump Machine

    Get PDF
    The American College of Sports Medicine (ACSM) recommends that healthy adults achieve a minimum of thirty minutes of moderate intensity aerobic exercise five days per week. While cycling, walking, and jogging are commonly observed methods of achieving these recommendations, another option may be repetitive jumping. The purpose of this study was to examine the metabolic responses between repetitive jumping at a cadence of 120 jumps per minute (JPMs) vs. 100 JPMs when utilizing the Digi-Jump machine. Twenty-eight subjects completed two jumping trials, one at 120 JPMs and one at 100 JPMs. Subjects jumped until volitional exhaustion, or for a maximum of fifteen minutes. Oxygen uptake (VO2), heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) were assessed each minute of each exercise trial. RPE was differentiated, in that subjects reported perceived exertion of their total body, their upper-leg, and their lower leg. Results of this study indicated that there was no significant difference between the two trials for VO2, HR, or total body RPE. Differences were reported between trials for peak and average RER, with the 120 JPM trial eliciting a lower RER for both (peak: 1.08 + .087 vs. 1.17 + .1 p=.000; average: .99 + .076 vs. 1.04 + .098 p=.002), peak upper leg RPE (120: 15.29 + 3.89 vs. 100: 16.75 + 2.52 p=.022), and average lower leg RPE (120: 15.04 + 2.55 vs. 100: 13.94 + 2.02 p=.019). Also, there was a significant difference in exercise duration between the trials, with subjects able to exercise longer during the 120 JPM trial (12.4 + 3.42 mins vs. 9.68 + 4.31 mins p=.000). These data indicate that while the physiological stress may not be different between the two trials as indicated by VO2 and HR, the 120 JPM trial appears less strenuous as evidenced by RER values and by subjects’ ability to exercise longer at that cadence

    The Origin of Time Asymmetry

    Full text link
    It is argued that the observed Thermodynamic Arrow of Time must arise from the boundary conditions of the universe. We analyse the consequences of the no boundary proposal, the only reasonably complete set of boundary conditions that has been put forward. We study perturbations of a Friedmann model containing a massive scalar field but our results should be independent of the details of the matter content. We find that gravitational wave perturbations have an amplitude that remains in the linear regime at all times and is roughly time symmetric about the time of maximum expansion. Thus gravitational wave perturbations do not give rise to an Arrow of Time. However density perturbations behave very differently. They are small at one end of the universe's history, but grow larger and become non linear as the universe gets larger. Contrary to an earlier claim, the density perturbations do not get small again at the other end of the universe's history. They therefore give rise to a Thermodynamic Arrow of Time that points in a constant direction while the universe expands and contracts again. The Arrow of Time does not reverse at the point of maximum expansion. One has to appeal to the Weak Anthropic Principle to explain why we observe the Thermodynamic Arrow to agree with the Cosmological Arrow, the direction of time in which the universe is expanding.Comment: 41 pages, DAMTP R92/2
    corecore