140 research outputs found

    A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data

    Get PDF
    A boundary layer scaling (BLS) method for predicting long-term average near-surface wind speeds and power densities was developed in this work. The method was based on the scaling of reference climatological data either from long-term average wind maps or from hourly wind speeds obtained from high-resolution Numerical Weather Prediction (NWP) models, with case study applications from Great Britain. It incorporated a more detailed parameterisation of surface aerodynamics than previous studies and the predicted wind speeds and power densities were validated against observational wind speeds from 124 sites across Great Britain. The BLS model could offer long-term average wind speed predictions using wind map data derived from long-term observational data, with a mean percentage error of 1.5 % which provided an improvement on the commonly used NOABL (Numerical Objective Analysis of Boundary Layer) wind map. The boundary layer scaling of NWP data was not, however, able to improve upon the use of raw NWP data for near surface wind speed predictions. However, the use of NWP data scaled by the BLS model could offer improved power density predictions compared to the use of the reference data sets. Using a vertical scaling of the shape factor of a Weibull distribution fitted to the BLS NWP data, power density predictions with a 1 % mean percentage error were achieved. This provided a significant improvement on the use of a fixed shape factor which must be utilised when only long-term average wind speeds are available from reference wind maps. The work therefore highlights the advantages that use of a BLS model for wind speed and NWP data for power density predictions can offer for small to medium scale wind energy resource assessments, potentially facilitating more robust annual energy production and financial assessments of prospective small and medium scale wind turbine installations

    Sensitivity analysis of the dynamic CO2 storage capacity estimate for the Bunter Sandstone of the UK Southern North Sea

    Get PDF
    Carbon capture and storage (CCS) in subsurface reservoirs has been identified as a potentially cost-effective way to reduce CO2 emissions to the atmosphere. Global emissions reductions on the gigatonne scale using CCS will require regional or basin-scale deployment of CO2 storage in saline aquifers. Thus the evaluation of both the dynamic and ultimate CO2 storage capacity of formations is important for policy makers to determine the viability of CCS as a pillar of the greenhouse gas mitigation strategy in a particular region. We use a reservoir simulation model representing the large-scale Bunter Sandstone in the UK Southern North Sea to evaluate the dynamics and sensitivities of regional CO2 plume transport and storage. At the basin-scale, we predict hydrogeological changes in the storage reservoir in response to multiple regional carbon sequestration development scenarios. We test the sensitivity of injection capacity to a range of target CO2 injection rates and fluctuations in CO2 supply. Model sensitivities varying the target injection rates indicate that in the absence of pressure management up to 3.7 Gt of CO2 can be stored in the Bunter region over 50 years given the pressure constraints set to avoid fracturing the formation. Long-term (approx. 1000 years), our results show that up to 16 Gt of CO2 can be stored in the Bunter region without pressure management. With pressure management, the estimate rises to 32 Gt. However, consideration must be given to the additional operational and economic requirements of pressure management using brine production

    Forced Gravity Waves and the Tropospheric Response to Convection

    Get PDF
    We present theoretical work directed toward improving our understanding of the mesoscale influence of deep convection on its tropospheric environment through forced gravity waves. From the linear, hydrostatic, non-rotating, incompressible equations, we find a two-dimensional analytical solution to prescribed heating in a stratified atmosphere, which is upwardly radiating from the troposphere when the domain lid is sufficiently high. We interrogate the spatial and temporal sensitivity of both the vertical velocity and potential temperature to different heating functions, considering both the near-field and remote responses to steady and pulsed heating. We find that the mesoscale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and the assumed stratification. We find a 50% reduction in tropospherically averaged vertical velocity when moving from a trapped (i.e. low lid) to upwardly-radiating (i.e. high lid) solution, but even with maximal upward radiation, we still observe significant tropospheric vertical velocities in the far-field 4 hours after heating ends. We quantify the errors associated with coarsening a 10 km wide heating to a 100 km grid (in the way a General Circulation Model (GCM) would), observing a 20% reduction in vertical velocity. The implications of these results for the parameterisation of convection in low-resolution numerical models are quantified and it is shown that the smoothing of heating over a grid-box leads to significant in grid-box tendencies, due to the erroneous rate of transfer of compensating subsidence to neighbouring regions. Further, we explore a simple time-dependent heating parameterisation that minimises error in a parent GCM grid box, albeit at the expense of increased error in the neighbourhood

    Adopting the International Standard 'Becoming a human-centred organization (ISO 27500)' supports a strategic approach to internationalisation.

    Get PDF
    Educational development is increasingly focussed on quality assurance and enhancement. Individual states/countries have their own mechanisms for assuring the student experience, and this has been accompanied by development of tools (including the UK’s National Student Survey) for capturing student opinion of our efforts. Areas where more work is needed include equity and diversity and it is perhaps time for a fresh approach. In other sectors, International Standards ensure safety, reliability and quality of products and services. Such standards also represent a stakeholder-negotiated (and therefore shared) understanding of ‘good quality’, supporting organisations in accessing new markets and permitting a fair global trade, an approach relevant to higher education. Recent publication of ISO (The International Organization for Standardization) Standard 27500 (the International Standard describing the principles and rationales behind becoming a humancentred organization) seems timely. Encouraging educational institutions to adopt this Standard may offer a strategy for addressing several issues, including internationalisation

    Impacts of orography on large-scale atmospheric circulation

    Get PDF
    Some of the largest and most persistent circulation errors in global numerical weather prediction and climate models are attributable to the inadequate representation of the impacts of orography on the atmospheric flow. Existing parametrization approaches attempting to account for unresolved orographic processes, such as turbulent form drag, low-level flow blocking or mountain waves, have been successful to some extent. They capture the basic impacts of the unresolved orography on atmospheric circulation in a qualitatively correct way and have led to significant progress in both numerical weather prediction and climate modelling. These approaches, however, have apparent limitations and inadequacies due to poor observational evidence, insufficient fundamental knowledge and an ambiguous separation between resolved and unresolved orographic scales and between different orographic processes. Numerical weather prediction and climate modelling has advanced to a stage where these inadequacies have become critical and hamper progress by limiting predictive skill on a wide range of spatial and temporal scales. More physically-based approaches are needed to quantify the relative importance of apparently disparate orographic processes and to account for their combined effects in a rational and accurate way in numerical models. We argue that, thanks to recent advances, significant progress can be made by combining theoretical approaches with observations, inverse modelling techniques and high-resolution and idealized numerical simulations

    Uncertainty in the Representation of Orography in Weather and Climate Models and Implications for Parameterized Drag

    Get PDF
    The representation of orographic drag remains a major source of uncertainty for numerical weather prediction (NWP) and climate models. Its accuracy depends on contributions from both the model grid‐scale orography (GSO) and the subgrid‐scale orography (SSO). Different models use different source orography datasets and different methodologies to derive these orography fields. This study presents the first comparison of orography fields across several operational global NWP models. It also investigates the sensitivity of an orographic drag parameterisation to the inter‐model spread in SSO fields and the resulting implications for representing the northern hemisphere winter circulation in a NWP model. The inter‐model spread in both the GSO and the SSO fields is found to be considerable. This is due to differences in the underlying source dataset employed and in the manner in which this dataset is processed (in particular how it is smoothed and interpolated) to generate the model fields. The sensitivity of parameterised orographic drag to the inter‐model variability in SSO fields is shown to be considerable and dominated by the influence of two SSO fields: the standard deviation and the mean gradient of the SSO. NWP model sensitivity experiments demonstrate that the inter‐model spread in these fields is of first‐order importance to the inter‐model spread in parameterised surface stress, and to current known systematic model biases. The revealed importance of the SSO fields supports careful reconsideration of how these fields are generated, guiding future development of orographic drag parameterisations and re‐evaluation of the resolved impacts of orography on the flow

    On the critical pair theory in abelian groups : Beyond Chowla's Theorem

    Full text link
    We obtain critical pair theorems for subsets S and T of an abelian group such that |S+T| < |S|+|T|+1. We generalize some results of Chowla, Vosper, Kemperman and a more recent result due to Rodseth and one of the authors.Comment: Submitted to Combinatorica, 23 pages, revised versio

    Lesula: A New Species of Cercopithecus Monkey Endemic to the Democratic Republic of Congo and Implications for Conservation of Congo’s Central Basin

    Full text link
    In June 2007, a previously undescribed monkey known locally as “lesula” was found in the forests of the middle Lomami Basin in central Democratic Republic of Congo (DRC). We describe this new species as Cercopithecus lomamiensis sp. nov., and provide data on its distribution, morphology, genetics, ecology and behavior. C. lomamiensis is restricted to the lowland rain forests of central DRC between the middle Lomami and the upper Tshuapa Rivers. Morphological and molecular data confirm that C. lomamiensis is distinct from its nearest congener, C. hamlyni, from which it is separated geographically by both the Congo (Lualaba) and the Lomami Rivers. C. lomamiensis, like C. hamlyni, is semi-terrestrial with a diet containing terrestrial herbaceous vegetation. The discovery of C. lomamiensis highlights the biogeographic significance and importance for conservation of central Congo’s interfluvial TL2 region, defined from the upper Tshuapa River through the Lomami Basin to the Congo (Lualaba) River. The TL2 region has been found to contain a high diversity of anthropoid primates including three forms, in addition to C. lomamiensis, that are endemic to the area. We recommend the common name, lesula, for this new species, as it is the vernacular name used over most of its known range

    A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa

    Get PDF
    This is the final version. Available on open access from the American Meteorological Society via the DOI in this recordA convection-permitting multiyear regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) Improving Model Processes for African Climate (IMPALA) project, and its configuration, domain, and forcing data are described here in detail. The model [Pan-African Convection-Permitting Regional Climate Simulation with the Met Office UM (CP4-Africa)] uses a 4.5-km horizontal grid spacing at the equator and is run without a convection parameterization, nested within a global atmospheric model driven by observations at the sea surface, which does include a convection scheme. An additional regional simulation, with identical resolution and physical parameterizations to the global model, but with the domain, land surface, and aerosol climatologies of CP4-Africa, has been run to aid in the understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parameterization and resolution. The effect of enforcing moisture conservation in CP4-Africa is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first five years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent.Natural Environment Research Council (NERC
    • 

    corecore