442 research outputs found

    Spatial variability change of MgO content in Jelsava magnesite deposit (Slovakia)

    Get PDF
    The presented paper deals with the study of the spatial variability changes of MgO content within the Jelšava magnesite deposit in Slovakia. The geostatistical structural analysis was used to study the spatial variability changes of the MgO content within three mining sectors A, B and C, localised in different parts of the deposit. The results show some important connections between the variability of MgO content and the structure setting of the deposit with utilization for the magnesite processing in the metallurgy

    Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation

    Get PDF
    Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division

    Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype

    Get PDF
    The type II PI 4-kinases enzymes synthesise the lipid phosphatidylinositol 4-phosphate (PI(4)P) which has been detected at the Golgi complex and endosomal compartments, and which recruits clathrin adaptors. Despite common mechanistic similarities between the isoforms, the extent of their redundancy is unclear.We found that depletion of PI4KIIα and PI4KIIβ using siRNA led to actin remodelling. Depletion of PI4KIIβ also induced the formation of invadopodia containing membrane type I matrix metalloproteinase (MT1-MMP).Depletion of PI4KII isoforms also differentially affected TGN pools of PI(4)P and post-TGN traffic. PI4KIIβ depletion caused increased MT1-MMP trafficking to invasive structures at the plasma membrane and was accompanied by reduced colocalisation of MT1-MMP with membranes containing the endosomal markers Rab5 and Rab7, but increased localisation with the exocytic Rab8. Depletion of PI4KIIβ was sufficient to confer an aggressive invasive phenotype on minimally invasive HeLa and MCF-7 cell lines. Mining oncogenomic databases revealed that loss of the PI4K2B allele and underexpression of PI4KIIβ mRNA is associated with human cancers. This finding supports the cell data and suggests that PI4KIIβ may be a clinically significant suppressor of invasion. We propose that PI4KIIβ synthesises a pool of PI(4)P that maintains MT1-MMP traffic in the degradative pathway and suppresses the formation of invadopodia

    Effects of articaine on [3H]noradrenaline release from cortical and spinal cord slices prepared from normal and streptozotocin-induced diabetic rats and compared to lidocaine.

    Get PDF
    Since a significant proportion of diabetic patients have clinical or subclinical neuropathy, there may be concerns about the use of local anaesthetics. The present study was designed to determine and compare the effects of articaine, a widely used anaesthetic in dental practice, and lidocaine on the resting and axonal stimulation-evoked release of [3H]noradrenaline ([3H]NA) in prefrontal cortex slices and the release of [3H]NA in spinal cord slices prepared from non-diabetic and streptozocin (STZ)-induced diabetic (glucose level=22.03+/-2.31mmol/l) rats. The peak of allodynia was achieved 9 weeks after STZ-treatment. Articaine and lidocaine inhibited the stimulation-evoked release in a concentration-dependent manner and increased the resting release by two to six times. These effects indicate an inhibitory action of these anaesthetics on Na+- and K+-channels. There was no difference in clinically important nerve conduction between non-diabetic and diabetic rats, as measured by the release of transmitter in response to axonal stimulation. The uptake and resting release of NA was significantly higher in the brain slices prepared from diabetic rats, but there were no differences in the spinal cord. For the adverse effects, the effects of articaine on K+ channels (resting release) are more pronounced compared to lidocaine. In this respect, articaine has a thiophene ring with high lipid solubility, which may present potential risks for some patients

    Conduit integrity is compromised during acute lymph node expansion

    Get PDF
    Lymph nodes (LNs) work as filtering organs, constantly sampling peripheral cues. This is facilitated by the conduit network, a parenchymal tubular-like structure formed of bundles of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo 5-fold expansion with every adaptive immune response and yet these ECM-rich structures are not permanently damaged. Whether conduit integrity and filtering functions are affected during cycles of LN expansion and resolution is not known. Here we show that the conduit structure is disrupted during acute LN expansion but FRC-FRC contacts remain intact. In homeostasis, polarised FRCs adhere to the underlying substrate to deposit ECM ba-solaterally. ECM production by FRCs is regulated by the C-type lectin CLEC-2, expressed by dendritic cells (DCs), at transcriptional and secretory levels. Inflamed LNs maintain conduit size-exclusion, but flow becomes leaky, which allows soluble antigens to reach more antigen-presenting cells. We show how dynamic communication between peripheral tissues and LNs changes during immune responses, and describe a mechanism that enables LNs to prevent inflammation-induced fibrosis

    Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate.

    Get PDF
    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (the "ThDP-enamine"/C2alpha-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an "off-pathway" side reaction comprising less than 1% of the "on-pathway" reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease

    Polypeptide modification: an improved proglycinin design to stabilise oil-in-water emulsions

    Get PDF
    β-Conglycinin and glycinin are soybean major seed storage proteins. Previous studies have shown that adding the extension region of β-conglycinin α subunit improves the emulsifying properties of proglycinin and confers more favourable characteristics than fusing the extension region of β-conglycinin α' subunit or the hypervariable regions (A4IV) of glycinin A1aB1b subunit. To evaluate the polypeptide properties, we designed mutants of A1aB1b subunits fused with truncated versions of A4IV (A4IVcut), α (αcut) or α' (α'cut) extension regions lacking the C-terminus 25 or 31 residues (A4IVC25, αC25 or α'C31), and also A4IVcut and α'cut with αC25 residues added (A4IVcut-αC25 and α'cut-αC25). All the modified proteins displayed conformations similar to the wild type. With good solubilities, the emulsion properties of the modified proteins were much better at ionic strength μ = 0.08 than at μ = 0.5. The modified A1aB1bαcut and A1aB1bα'cut showed poorer emulsion properties than those of A1aB1bα and A1aB1bα'. Replacing the hydrophobic A4IVC25 region of A1aB1bA4IV with hydrophilic αC25 created A1aB1bA4IVcut-αC25, which had the best emulsion stability among these proglycinin mutants. We found that addition of αC25 improves the emulsifying properties of two C-terminally truncated proglycinin variants, thereby illustrating its potential general utility. Our investigation showed that in order to improve the emulsifying ability and emulsion stability of a globular protein, the introduced polypeptide should (i) be highly hydrophilic, (ii) consist of multiple hydrophobic-strong hydrophilic regions comprising at least two alpha helixes, (iii) harbour a terminal α-helix at the end of the C-terminus and (iv) have properties similar to those of αC25

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions

    Molecular Signatures of Regression of the Canine Transmissible Venereal Tumor

    Get PDF
    The canine transmissible venereal tumor (CTVT) is a clonally transmissible cancer that regresses spontaneously or after treatment with vincristine, but we know little about the regression mechanisms. We performed global transcriptional, methylation, and functional pathway analyses on serial biopsies of vincristine-treated CTVTs and found that regression occurs in sequential steps; activation of the innate immune system and host epithelial tissue remodeling followed by immune infiltration of the tumor, arrest in the cell cycle, and repair of tissue damage. We identified CCL5 as a possible driver of CTVT regression. Changes in gene expression are associated with methylation changes at specific intragenic sites. Our results underscore the critical role of host innate immunity in triggering cancer regression. By analyzing serial biopsies of vincristine-treated canine transmissible venereal tumors, Frampton et al. show that tumor regression occurs in sequential steps involving the activation of the innate immune system and immune infiltration of the tumor, and they identify CCL5 as a possible driver of regression

    Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition

    Get PDF
    Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7’s (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells
    corecore