1,101 research outputs found

    Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized Xenon

    Get PDF
    Current experiments in liquid-state nuclear magnetic resonance quantum computing are limited by low initial polarization. To address this problem, we have investigated the use of optical pumping techniques to enhance the polarization of a 2-qubit NMR quantum computer (13C and 1H in 13CHCl3). To efficiently use the increased polarization, we have generalized the procedure for effective pure state preparation. With this new, more flexible scheme, an effective pure state was prepared with polarization-enhancement of a factor of 10 compared to the thermal state. An implementation of Grover's quantum search algorithm was demonstrated using this new technique.Comment: 4 pages, 3 figures. Submitted for publicatio

    Generating and sustaining long-lived spin states in 15N,15N′-azobenzene

    Get PDF
    Long-Lived spin States (LLSs) hold a great promise for sustaining non-thermal spin order and investigating various slow processes by Nuclear Magnetic Resonance (NMR) spectroscopy. Of special interest for such application are molecules containing nearly equivalent magnetic nuclei, which possess LLSs even at high magnetic fields. In this work, we report an LLS in trans-15N,15N′-azobenzene. The singlet state of the 15N spin pair exhibits a long-lived character. We solve the challenging problem of generating and detecting this LLS and further increase the LLS population by converting the much higher magnetization of protons into the 15N singlet spin order. As far as the longevity of this spin order is concerned, various schemes have been tested for sustaining the LLS. Lifetimes of 17 minutes have been achieved at 16.4 T, a value about 250 times longer than the longitudinal relaxation time of 15N in this magnetic field. We believe that such extended relaxation times, along with the photochromic properties of azobenzene, which changes conformation upon light irradiation and can be hyperpolarized by using parahydrogen, are promising for designing new experiments with photo-switchable long-lived hyperpolarization

    Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways

    Get PDF
    The epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) control the epithelial-to-mesenchymal transition (EMT) splicing program in cancer. However, their role in breast cancer recurrence is unclear. In this study, we report that high levels of ESRP1, but not ESRP2, are associated with poor prognosis in estrogen receptor positive (ER+) breast tumors. Knockdown of ESRP1 in endocrine-resistant breast cancer models decreases growth significantly and alters the EMT splicing signature, which we confirm using TCGA SpliceSeq data of ER+ BRCA tumors. However, these changes are not accompanied by the development of a mesenchymal phenotype or a change in key EMT-transcription factors. In tamoxifen-resistant cells, knockdown of ESRP1 affects lipid metabolism and oxidoreductase processes, resulting in the decreased expression of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and phosphoglycerate dehydrogenase (PHGDH) at both the mRNA and protein levels. Furthermore, ESRP1 knockdown increases the basal respiration and spare respiration capacity. This study reports a novel role for ESRP1 that could form the basis for the prevention of tamoxifen resistance in ER+ breast cancer

    Transfer of Parahydrogen Induced Polarization in Scalar Coupled Systems at Variable Magnetic Field

    Get PDF
    Para-Hydrogen Induced Polarization (PHIP) experiments were performed in coupled multispin systems at variable magnetic fields. We studied the magnetic field dependence of PHIP in styrene, which is the product of hydrogenation of phenylacetylene. At low magnetic fields where the spins are coupled strongly by scalar interaction efficient polarization transfer among the interacting protons takes place. The experimentally observed spectra are in good agreement with the simulation, which takes into account eight coupled spins. We also demonstrate effects of nuclear spin level anti-crossings on the PHIP pattern. It is shown that rapid passage through the level anti-crossing enables highly efficient polarization transfer between specific spin orders. In addition, we studied PHIP transfer to 13C and 19F hetero-nuclei. It is shown that hetero- nuclei can be efficiently polarized in a wide field range; in particular, for polarizing them it is not necessary to go to ultra-low fields, which provide their strong coupling to protons. The resulting polarization is of the multiplet type and gives strong enhancements of the individual NMR lines. In general, variation of the magnetic field gives the opportunity for manipulating PHIP patterns and transferring polarization to target spins of choice

    Randomized comparison of the effects of the vitamin D(3 )adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients

    Get PDF
    BACKGROUND: For adults, vitamin D intake of 100 mcg (4000 IU)/day is physiologic and safe. The adequate intake (AI) for older adults is 15 mcg (600 IU)/day, but there has been no report focusing on use of this dose. METHODS: We compared effects of these doses on biochemical responses and sense of wellbeing in a blinded, randomized trial. In Study 1, 64 outpatients (recruited if summer 2001 25(OH)D <61 nmol/L) were given 15 or 100 mcg/day vitamin D in December 2001. Biochemical responses were followed at subsequent visits that were part of clinical care; 37 patients completed a wellbeing questionnaire in December 2001 and February 2002. Subjects for Study 2 were recruited if their 25(OH)D was <51 nmol/L in summer 2001. 66 outpatients were given vitamin D; 51 completed a wellbeing questionnaire in both December 2002 and February 2003. RESULTS: In Study 1, basal summer 25-hydroxyvitamin D [25(OH)D] averaged 48 ± 9 (SD) nmol/L. Supplementation for more than 6 months produced mean 25(OH)D levels of 79 ± 30 nmol/L for the 15 mcg/day group, and 112 ± 41 nmol/L for the 100 mcg/day group. Both doses lowered plasma parathyroid hormone with no effect on plasma calcium. Between December and February, wellbeing score improved more for the 100-mcg/day group than for the lower-dosed group (1-tail Mann-Whitney p = 0.036). In Study 2, 25(OH)D averaged 39 ± 9 nmol/L, and winter wellbeing scores improved with both doses of vitamin D (two-tail p < 0.001). CONCLUSION: The highest AI for vitamin D brought summertime 25(OH)D to >40 nmol/L, lowered PTH, and its use was associated with improved wellbeing. The 100 mcg/day dose produced greater responses. Since it was ethically necessary to provide a meaningful dose of vitamin D to these insufficient patients, we cannot rule out a placebo wellbeing response, particularly for those on the lower dose. This work confirms the safety and efficacy of both 15 and 100 mcg/day vitamin D(3 )in patients who needed additional vitamin D

    Exploiting adiabatically switched RF-field for manipulating spin hyperpolarization induced by parahydrogen

    Get PDF
    A method for precise manipulation of non-thermal nuclear spin polarization by switching a RF-field is presented. The method harnesses adiabatic correlation of spin states in the rotating frame. A detailed theory behind the technique is outlined; examples of two-spin and three-spin systems prepared in a non- equilibrium state by Para-Hydrogen Induced Polarization (PHIP) are considered. We demonstrate that the method is suitable for converting the initial multiplet polarization of spins into net polarization: compensation of positive and negative lines in nuclear magnetic resonance spectra, which is detrimental when the spectral resolution is low, is avoided. Such a conversion is performed for real two-spin and three-spin systems polarized by means of PHIP. Potential applications of the presented technique are discussed for manipulating PHIP and its recent modification termed signal amplification by reversible exchange as well as for preparing and observing long-lived spin states

    Manipulating spin hyper-polarization by means of adiabatic switching of a spin-locking RF-field

    Get PDF
    We propose a technique for transferring the multiplet spin polarization (CIDNP or PHIP, or one created by any other method), which is the mutual entanglement of spins, into net hyper-polarization with respect to the direction of a high magnetic field by slowly (adiabatically) switching-off a strong external RF- field with a specially selected frequency. The net hyper-polarized molecules can then be used in NMR spectroscopy or imaging for strong signal enhancement

    cis Versus trans-Azobenzene: Precise Determination of NMR Parameters and Analysis of Long-Lived States of 15N Spin Pairs

    Get PDF
    We provide a detailed evaluation of nuclear magnetic resonance (NMR) parameters of the cis- and trans-isomers of azobenzene (AB). For determining the NMR parameters, such as proton–proton and proton–nitrogen J-couplings and chemical shifts, we compared NMR spectra of three different isotopomers of AB: the doubly 15N labeled azobenzene, 15N,15N′-AB, and two partially deuterated AB isotopomers with a single 15N atom. For the total lineshape analysis of NMR spectra, we used the recently developed ANATOLIA software package. The determined NMR parameters allowed us to optimize experiments for investigating singlet long-lived spin states (LLSs) of 15N spin pairs and to measure LLS lifetimes in cis-AB and trans-AB. Magnetization-to-singlet-to-magnetization conversion has been performed using the SLIC and APSOC techniques, providing a degree of conversion up to 17 and 24% of the initial magnetization, respectively. Our approach is useful for optimizing the performance of experiments with singlet LLSs; such LLSs can be exploited for preserving spin hyperpolarization, for probing slow molecular dynamics, slow chemical processes and also slow transport processes
    corecore