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Splicing factor ESRP1 controls ER-positive breast
cancer by altering metabolic pathways
Yesim Gökmen-Polar1,* , Yaseswini Neelamraju2, Chirayu P Goswami3, Yuan Gu1, Xiaoping Gu1,

Gouthami Nallamothu1, Edyta Vieth1, Sarath C Janga4,5,6 , Michael Ryan7,8 & Sunil S Badve1,9,10,**

Abstract

The epithelial splicing regulatory proteins 1 and 2 (ESRP1 and
ESRP2) control the epithelial-to-mesenchymal transition (EMT)
splicing program in cancer. However, their role in breast cancer
recurrence is unclear. In this study, we report that high levels of
ESRP1, but not ESRP2, are associated with poor prognosis in
estrogen receptor positive (ER+) breast tumors. Knockdown of
ESRP1 in endocrine-resistant breast cancer models decreases
growth significantly and alters the EMT splicing signature, which
we confirm using TCGA SpliceSeq data of ER+ BRCA tumors.
However, these changes are not accompanied by the development
of a mesenchymal phenotype or a change in key EMT-transcrip-
tion factors. In tamoxifen-resistant cells, knockdown of ESRP1
affects lipid metabolism and oxidoreductase processes, resulting
in the decreased expression of fatty acid synthase (FASN),
stearoyl-CoA desaturase 1 (SCD1), and phosphoglycerate dehydro-
genase (PHGDH) at both the mRNA and protein levels. Further-
more, ESRP1 knockdown increases the basal respiration and spare
respiration capacity. This study reports a novel role for ESRP1
that could form the basis for the prevention of tamoxifen resis-
tance in ER+ breast cancer.
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Introduction

The estrogen receptor positive (ER+) subtype constitutes approxi-

mately 70% of all breast cancers. Despite the success of endocrine

therapies in the early stage of ER+ breast cancer, at least 20% of

patients will suffer a distant recurrence within 10 years [1,2]. More

specifically, the intrinsic or acquired resistance to endocrine therapy

limits its utility in these patients, leading to recurrence. Thus, it is

crucial to identify the underlying molecular mechanisms of recur-

rence/resistance to improve the success of endocrine therapies and

prevent breast cancer mortality.

Several studies have sought to understand the basis of recurrence

by studying tamoxifen/endocrine therapy resistance models [3–5].

Acquired resistance models, such as the stepwise increase in treat-

ment with tamoxifen or fulvestrant in vitro, estrogen deprivation or

the overexpression of a marker that confers endocrine resistance,

have been used in vitro and in vivo to study this phenomenon.

Crosstalk between ER and other signaling pathways and epigenetic

mechanisms are well-documented mechanisms of recurrence/resis-

tance in endocrine resistance. Using Next-Gen sequencing, the

importance of ER mutations in endocrine resistance has been

demonstrated [6–8]. Other studies have evaluated the resistance

mechanisms using ER+ tumors from patients treated before surgery

and reported that FGFR1 amplification confers antiestrogen resis-

tance to ER+ breast cancer and that the ERa pathway remains active

in estrogen-deprived ER+/FGFR1-amplified breast cancers [9].

Changes in biological processes such as proliferation and oxidative

phosphorylation have also been reported to contribute to tamoxifen

resistance [10].

Aberrant alternative splicing in cancer, including breast cancer,

is an emerging field and may affect genes and proteins both at the

expression and functional levels. These events are regulated by

complex processes involving the core spliceosome machinery and
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multiple regulatory factors [11]. Mutations in splicing factors or

changes in expression levels of the proteins may contribute to aber-

rant alternative splicing. The splicing factor 3b subunit 1, SF3B1,

was one of the mutated genes identified using next-generation

sequencing of breast tumors [12–14]. We have previously demon-

strated the upregulation of SF3B1 and SF3B3, another SF3B subunit,

in acquired endocrine-resistant models as well as in cases with

Oncotype Dx high recurrence scores [15]. However, only SF3B3

expression is correlated with a poor prognosis in the patients with

ER+ breast cancer [15].

A number of splicing factors have been reported to affect the

hallmarks of cancer [16]. Epithelial splicing regulatory proteins

(ESRPs—ESRP1 and ESRP2) are implicated in invasion, metastasis,

and the regulation of the splicing program involved in the epithelial-

to-mesenchymal transition (EMT) in cancer [17–19]. ESRP1

promotes lung cancer metastasis by regulating CD44 splicing in ER-

negative 4T1 mouse mammary tumor cells [20]. The relevance of

ESRPs to breast cancer is not clear. In this study, we sought to deter-

mine the role of ESRPs in ER+ breast cancer and have identified a

novel aspect of ESRP1 functionality in endocrine therapy-resistant

breast cancer.

Results

High ESRP1 expression correlates with worse prognosis in ER+
breast cancer

To determine the clinical relevance of ESRP1 and ESRP2 in breast

cancer, we first correlated the gene expression levels with the over-

all survival (OS) using the BreastMark tool, which integrates the

gene expression and survival data from 26 datasets based on 12 dif-

ferent microarray platforms [21]. This analysis showed that a higher

expression of ESRP1 correlated with a worse prognosis for ER+

breast cancer [Hazard ratio (HR) = 2.01 (1.53–2.64); Score (log

rank) test = 26.4 on 1 df, P = 2.8 e-07 (n = 934, number of

events = 216)] (Fig 1A) using Cox proportional hazards regression

analysis. However, ESRP1 expression was not prognostic in patients

with estrogen receptor negative (ER�) breast cancers (Fig 1B;

HR = 1.15 (0.8–1.68); Score (log rank) test = 0.58 on 1 df,

P = 0.4481; n = 322, number of events = 130). Expression of ESRP2

was not associated with the overall survival of patients with ER+

tumors [Fig EV1A; HR = 1.117 (0.82–1.51); Score (log rank)

test = 0.53 on 1 df, P = 0.47 (n = 708, number of events = 171)] as

well as the overall survival of patients with ER-negative tumors

[Fig EV1B; HR = 1.37 (0.91–2.04); Score (log rank) test = 2.31 on 1

df, P = 0.13 (n = 253, number of events = 96)] in BreastMark

datasets.

We further assessed the correlation of ESRP1 expression with the

overall survival in tamoxifen-treated patients using the same plat-

form in the BreastMark database. A high expression of ESRP1 was

associated with a shorter overall survival in the patients with ER+

tumors that were treated with tamoxifen [Fig 1C; HR = 5.021

(2.434–10.36); Score (log rank) test = 23.55 on 1 df, P = 1.218 e-06

(n = 210, number of events = 49)]. On the other hand, the overall

survival was independent of ESRP1 expression in the patients

treated with chemotherapy alone (Fig 1D; HR = 1.599 (0.6773–

3.773); Score (log rank) test = 1.17 on 1 df, P = 0.28 (n = 129,

number of events = 21)). The effect of ESRP1 levels in the patients

treated with a combination of tamoxifen and chemotherapy was not

significant (data not shown), probably due to the small numbers in

the cohort.

Analysis of the Cancer Genome Atlas Breast Invasive Carcinoma

(TCGA-BRCA) [12] cohort also revealed that high ESRP1 expression

was associated with a significantly shorter overall survival in ER+

breast cancer patients [Fig 1E; P = 0.00011 (n = 656, number of

events = 62)], but not in ER� cases [Fig 1F; P = 0.19 (n = 100,

number of events = 17)]. The limitation of the TCGA dataset was

that the treatment status was not available for all cases. The expres-

sion of ESRP2 was not associated with the overall survival in either

the ER+ or ER� datasets using the TCGA cohorts (Fig EV1C and D).

Collectively, these results show that ESRP1 expression (but not

ESRP2) is prognostically important in the ER+ subtype of breast

cancer.

The association of high ESRP1 expression with poor prognosis in

ER+ breast cancer was further confirmed by quantitative RT-qPCR

in a cohort of patients with a high Oncotype Dx recurrence score

(HS) (P = 0.01034) (Fig EV1E). Oncotype Dx is a commercial assay

developed using the National Surgical Adjuvant Breast and Bowel

Project (NSABP) B14 and B20 clinical trials that assess the recur-

rence of ER+ breast cancers [22]. A high recurrence score usually

predicts resistance to endocrine therapies.

To investigate the role of ESRP1 in ER+ preclinical models with

poor prognosis, we next determined ESRP1 expression at the mRNA

and protein levels in acquired tamoxifen-resistant LCC2 cells and

fulvestrant-resistant (and cross-resistant to tamoxifen) LCC9 cells

compared to therapy-sensitive parental MCF-7-AZ control cells

(Fig EV2A). ESRP1 levels were significantly higher in the LCC2 cells

(P = 0.0001) and LCC9 cells (P = 0.0001) than in the parental MCF-

7-AZ cells in both the mRNA (Fig EV2A) and protein analyses

(Fig EV2B). In addition, another poor prognostic ER+ cell line

(T-47D) displayed high ESRP1 levels at both levels (P = 0.0001).

Together, these results support the hypothesis that ESRP1 plays an

important role in recurrent and endocrine therapy-resistant ER+

breast cancer.

Knockdown of ESRP1 in ER+ breast cancer impacts cell and
tumor growth in endocrine-resistant breast cancer

To further understand the functional role of ESRP1 in recurrence/

resistance to endocrine therapy, we first established stable ESRP1

knockdown in the LCC2 (tamoxifen-resistant) and LCC9 (fulves-

trant-resistant) cell lines using a lentiviral shRNA approach. The

knockdown resulted in a dramatic decrease in both the mRNA and

protein levels in these cell lines (ESRP1 knockdown in LCC2 cells-

clone 2C1 and clone 2C3 cells, P < 0.05; ESRP1 knockdown in

LCC9 cells-clones 9C2, P = 0.0001 and clone 9C3 cells, P = 0.0021;

Fig 2A and B) compared to their control counterparts (LCC2 empty

vector-2-control and LCC9 empty vector-9-control). The clones with

the highest knockdown (2C3 for LCC2; 9C2 for LCC9) were chosen

to perform the functional and mechanistic studies. Knockdown was

also performed in T-47D cells, which have a higher level of ESRP1

compared to that of MCF-7 cells. Overexpression of ESRP1 has been

performed in MCF-7 cells, which have lower levels of endogenous

ESRP1. Appendix Fig S1A and B show the mRNA and protein

expression levels for both models.
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Figure 1. High ESRP1 expression correlates with poor prognosis in estrogen receptor positive (ER+) but not in estrogen receptor negative (ER�) breast cancer.

A BreastMark microarray platform; Kaplan–Meier curves of overall survival (OS), demonstrating that high expression of ESRP1 (red line) is associated with poor
prognosis in ER+ breast cancer. A log rank test was used to calculate P = 2.8 e-07 (n = 934, number of events = 216).

B BreastMark microarray platform; Kaplan–Meier curves of overall survival (OS) of ER� breast cancer. A log rank test was used to calculate P = 0.4481 (n = 322,
number of events = 130).

C BreastMark microarray platform; correlation of ESRP1 expression with overall survival in tamoxifen-treated patients. A log rank test was used to calculate P = 1.218,
e-06 (n = 210, number of events = 49).

D BreastMark microarray platform; correlation of ESRP1 expression with overall survival in chemotherapy-treated patients. A log rank test was used to calculate the
P = 0.28 (n = 129, number of events = 21)

E The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) RNA-Seq dataset; Kaplan–Meier curves of overall survival (OS) in ER+ breast cancer, demonstrating
that high expression of ESRP1 (red line) is associated with poor prognosis in ER+ breast cancer. A log rank test was used to calculate P = 0.00011 (n = 656, number of
events = 62).

F The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) RNA-Seq dataset; Kaplan–Meier curves of overall survival (OS) in ER� breast cancer. Red-high
ESRP1 expression; Black-low ESRP1 expression. A log rank test was used to calculate P = 0.19 (n = 100, number of events = 17).
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To further analyze the impact of endocrine therapy on the ESRP1

knockdown cells, we determined the relative cell density in the pres-

ence and absence of b-estradiol (E2), tamoxifen (TAM), and fulves-

trant (ICI 182,780). These studies showed that ESRP1 knockdown in

LCC2 alone resulted in a significant (P < 0.0001) reduction in the

cell growth with a further decrease in the response to E2 and TAM

or the combination of these two agents (Fig 2C). Similar results

were observed in the LCC9 knockdown cells in response to fulves-

trant (P < 0.0001) but to a lesser degree compared to those treated

with tamoxifen (P < 0.01) (Fig 2C).

A significant reduction in the colony formation and cell growth

was observed in soft agar at 8 days in both the knockdown models

(Fig 2D). Despite the effect of ESRP1 knockdown on cell growth, no

changes were observed in the cell cycle or apoptosis in vitro

(Appendix Fig S2A and B). In vivo, knockdown of ESRP1 signifi-

cantly suppressed the tumor growth in the mammary fat pad of

orthotopic xenograft mice models of LCC2 and LCC9 (P < 0.05)

(Fig 2E), confirming the role of ESRP1 in cell growth and prolifera-

tion in endocrine therapy-resistant ER+ models.

ESRP1 knockdown does not induce an EMT phenotype in ER+
breast cancer

Lack of ESRP1 is known to induce EMT in epithelial cells. To better

understand the impact of ESRP1 knockdown on EMT in ER+ breast

cancer, we first assessed the morphology of the cells in both models.

Knockdown of ESRP1 switched the cells to a more glandular (nor-

mal) pattern compared to that of the control cell lines. No

mesenchymal patterns were observed in either model of ESRP1

knockdown (Fig 3A and B). We further analyzed the key EMT-indu-

cing transcription factors (EMT-TFs) and proteins associated with

the EMT process using Western blot analysis (Fig 3C). One of the

hallmarks of EMT is the loss of E-cadherin (encoded by CDH1) [23].

E-cadherin protein levels, representative of epithelialness, were not

significantly altered in both the ESRP1 knockdown cells (Fig 3C and

D). Vimentin was absent in these models. SLUG (SNAI2) and ZEB2

levels were down in the 2C3 cells but up in the 9C2 cells. SNAIL

(SNAI1) and ZEB1, both inducers of EMT and repressors of CDH1,

decreased in both the 2C3 and 9C2 knockdowns. Claudin-1 levels,

another regulator of EMT, remained unchanged in response to

ESRP1 knockdown. ZO-1 is not expressed in these models (data not

shown). We also confirmed these results in another cell line knock-

down model (T-47D-control and T-47D-kESRP1 knockdown) and in

an ESRP1 overexpression model (MCF-7-control and MCF-7-ESRP1)

(Fig 3E). These data show that the knockdown of ESRP1 does not

induce key EMT players in ER+ breast cancer models. In addition, a

change in in vitro invasive ability was not observed in either model

in response to knockdown (Appendix Fig S3). This suggests that

ESRP1’s key role in recurrence/resistance in ER+ breast cancer may

not be due to its impact on the EMT process.

Preca et al [24] reported that ZEB1 overexpression in MCF10A

downregulates ESRP1 and switches cells to CD44s, suggesting the

importance of ZEB1 for the EMT phenotype. In addition, ER+ and

luminal breast tumors mostly retain the CD44 variable exons [25].

High expression of CD44s has also been shown to be essential for

cells to undergo EMT [26]. To further understand the impact of

ESRP1 knockdown on the CD44 splice variants in our models, we

assessed the CD44s versus CD44v switch in response to ESRP1

knockdown using RT–qPCR (Appendix Fig S4). We observed that

the CD44s isoform is significantly dominant in the fulvestrant-resis-

tant knockdown (9C2) compared to CD44v2. However, this switch

from CD44v2 to CD44s was not significant in the 2C3-ESRP1 knock-

down (tamoxifen-resistant model). In 9C2-ESRP1 knockdown cells,

ZEB1 was not altered significantly compared to the levels in

9-control cells. In the 2C3 and 2-control cells, very low levels of

ZEB1 were present and were not induced in response to ESRP1

knockdown. These data clearly show that ESRP1’s role in our

models is different from that outlined by Preca et al and is indepen-

dent of EMT.

ESRP1 and epithelial splicing program

We next performed an Illumina paired-end RNA sequencing (RNA-

Seq) of the 2C3 and 9C2-ESRP1 shRNA knockdown cells and their

control counterparts (2-control and 9-control). This revealed signifi-

cant differences in the RNA profiles of these knockdown clones. The

differentially regulated genes were determined for each set alone

and the commonly overlapping sets based on a 2-fold change and

P < 0.05. Of the 1,178 significant genes, 484 were upregulated and

694 were downregulated in the 2C3 versus 2-control cells. In the

9C2 versus 9-control cells, 334 genes were significantly upregulated,

while 255 were downregulated.

▸Figure 2. Knockdown of ESRP1 decreases malignant and tumor growth significantly in endocrine-resistant ER+ breast cancer models.

A RT–qPCR confirmed the stable knockdown of ESRP1 expression in endocrine-resistant cells using a shRNA lentiviral system (Mission TRC human shRNA constructs-
Sigma); 2-control (LCC2 cells transduced with pLKO.1 control vector) and 2C1 and 2C3 (LCC2 cells transduced with pLKO.1 shRNA ESRP1). Clones were selected for
expression verification (clone 1 and clone 3); 9-control (LCC9 cells transduced with pLKO.1 control vector), 9C2 and 9C3 (LCC9 cells transduced with pLKO.1 shRNA
ESRP1). Clones were selected for expression verification (clone 2 and clone 3). * represents P < 0.05; statistically significant. Data (mean � SD) were calculated using
two-way ANOVA based on three independent biological replicates.

B Western blot analysis using ESRP1 antibody GTX 131373 (GeneTex). GAPDH is used as the reference control.
C Relative cell density was determined by crystal violet assay. Cells were treated with TAM (4-hydroxytamoxifen; 10�6 M) or ICI (ICI 182,780; 10�9 M) for 6 days in the

presence and absence of E2 (b-estradiol; 10�10 M). Data (mean � SD) were calculated using two-way ANOVA based on three independent biological replicates.
D Cell viability was determined using Cell Biolabs CytoSelectTM Cell Transformation Assay using 2-control, 2C3, 9-control, and 9C2 cells in CSM—charcoal-stripped

media, E2 (b-estradiol; 10�10 M), and 10% fetal bovine serum. Data (mean � SD) were calculated using two-way ANOVA based on three independent biological
replicates.

E Impact of ESRP1 knockdown on in vivo tumor growth. Five million cells (2-control, 2C3, 9-control, and 9C2) were implanted into mammary fat pads of athymic mice
(five mice per group) in the presence of supplemental estrogen. Tumors were measured weekly using calipers for external measurements. Tumor volume was
calculated as L × W2/2, where L is length and W is width (note the different scale for tumor volumes). Data (mean � SD) were calculated using two-way ANOVA
(n = 5 mice per group).

Source data are available online for this figure.
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Figure 3. Knockdown of ESRP1 does not induce EMT in models of resistance to endocrine therapy.

A Cell morphology using high-power magnification (40x) of the cultured cell lines under a microscope in LCC2 model-2-control and 2C3 cells. Scale bar: 50 lm.
B Cell morphology using high-power magnification (40×) of the cultured cell lines under a microscope in LCC9 model-9-control and 9C2 cells. Scale bar: 50 lm.
C, D Protein expression of key EMT-TFs in ESRP1 knockdown cells (2C3 and 9C2) compared to endocrine-resistant control cell lines (2-control and 9-control) using

Western blotting analysis.
E Protein expression of key EMT-TFs in ESRP1 knockdown cells (T-47D-kESRP1) and ESRP1-overexpressing MCF-7 cells (MCF-7-ESRP1) compared to their control

counterparts (T-47D-control and MCF-7-control, respectively).

Source data are available online for this figure.
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Prior studies in epithelial cells, including ER-negative breast

cancer cells, have reported that ESRP1 regulates EMT by promoting

an epithelial splicing program [18,19,27]. To explore the effect of

knockdown on this program in ER+ breast cancer, we performed a

multivariate analysis of transcript splicing (MATS) analysis [28–30]

comparing the ESRP1 knockdown clones with corresponding control

cells using Illumina paired-end RNA-Seq (Fig 4A). In the 2C3 knock-

down versus 2-control cells, we identified 535 differential ASEs in

432 genes (P < 0.05 and Dw < 0.1; Fig 4A). The skipped exon (SE)

events comprised the largest group (348 SE (65%) in 289 genes

(66.9%)) and were followed by changes in 78 mutually exclusive

exons (MXE—14.6%) in 36 genes (8.3%), 40 retained introns (RI—

7.5%) in 40 genes (9.3%), 32 alternative 50 splice sites (A5SS—6%)

in 30 genes (6.9%), and 37 alternative 30 splice sites (A3SS—6.9%)

in 37 genes (8.6%). Similar data were obtained for the 9C2 knock-

down versus 9-control cells and resulted in the identification of

1,083 significant ASEs (Fig 4A). The 1,083 events (842 genes) were

categorized as follows: 625 SE (57.7%) in 528 genes (62.7%), 216

MXE (19.9%) in 87 genes (10.3%), 91 RI (8.4%) in 86 genes

(10.2%), 76 A5SS (7%) in 70 genes (8.3%), and 75 A3SS (6.9%) in

72 genes (8.4%).

We further analyzed the role of ESRP1 in alternative splicing by

classifying the differential ASEs based on the ESRP motifs to deter-

mine direct control of the event by ESRP1. The ESRP binding motifs

(Fig 4A) were obtained from Dittmar et al [31] and analyzed based

on the following assumption: The presence of the motif in the down-

stream region of an exon results in the inclusion of the exon, while

upstream or intraexonic locations lead to the exclusion of the exon.

Among the significant events in the 2C3 knockdown versus 2-

control cells, 102 events (91 genes) harbored the predicted ESRP1

motifs consisting of 62 SE (61%) in 55 genes (60%), 22 MXE (22%)

in 18 genes (20%), 9 RI (9%) in 9 genes (10%), 7 A3SS (7%) in 7

genes (8%), and 2 A5SS (2%) in 2 genes (2%). Of the 1,083 events

in the 9C2 knockdown versus 9-control cells, 241 (20.4%) in 221

genes (26.2%) had ESRP1 motifs consisting of 132 SE (54.8) in 124

genes (56.1%), 41 MXE (17%) in 32 genes (14.5%), 26 RI (10.8%)

in 26 genes (11.8%), 23 A5SS (9.5%) in 21 genes (9.5%), and 19

A3SS (7.9%) in 18 genes (8.1%).

Warzecha et al [19] previously described a 10-gene EMT splicing

signature. We next analyzed the RNA-Seq data to understand the

impact of ESRP1 knockdown on this signature in these models. At

the gene level, ESRP1 knockdown did not change the mRNA expres-

sion of these genes (Fig 4B and D). In contrast, the ASEs of EMT-

related exons in ARHGEF11 (SE), RALGPS2 (SE), SCRIB (SE), SLK

(SE), and FLNB (A5SS) were present in both the LCC2 and LCC9

knockdown models, as indicated by the change in the splice index

(Fig 4C and E). Furthermore, ENAH (SE) and MAGI1 (SE and A3SS)

were identified only in the LCC2 model. The other three ASEs

(FNIP1, ARFGAP2, and SLC37A2) were not significant in either of

the cells.

To validate the RNA-Seq analysis, we employed an alternative

platform (Human Transcriptome Array 2.0 (HTA 2.0), Applied

Biosystems/Thermo Fisher Scientific, Santa Clara, CA) that identi-

fies ASEs using 10 probes per exon and 4 probes per exon–exon

junction. This analysis using Transcriptome Analysis Console (TAC)

3.0 validated seven of the 10 EMT ASE patterns in both cell lines

(Fig 5). In addition, the patterns for FLNB were confirmed in LCC2,

but not in the LCC9 model.

EMT alternative splicing program in human ESRP1high

ER+ breast cancers

Cell line models can be poor representations of cancer cell behav-

ior in patients. To better understand the importance of splicing

events, we analyzed them in the TCGA Breast Invasive Carci-

noma (BRCA) dataset. TCGA SpliceSeq is a resource for the

investigation of cross-tumor and tumor-normal alterations in the

mRNA splicing patterns of TCGA RNA-Seq data [32]. The survival

and splicing patterns in the cases (100 each) with the highest and

lowest ESRP1 expression were analyzed. Accordingly, the exon

skipping (SE) events comprised the largest group (290 SE corre-

sponding 279 genes) shown in Fig 6A. This pattern was followed

by alternative first exon (173 AP corresponding 173 genes), alter-

native last exon (89 AT corresponding 89 genes), retained intron

(5 RI corresponding to 5 genes), alternative 50 donor (33 AD

corresponding to 33 genes), alternative 30 acceptor (28 AA corre-

sponding 28 genes), and mutually exclusive exon (5 ME corre-

sponding to 5 genes) events. In the ESRP1_TCGA SpliceSeq BRCA

analysis of the EMT signature, ASEs were also identified in five

of the 10 genes (ARHGEF11, ENAH, FNIP1, SCRIB, and SLK;

Fig 6B), indicating that the patterns of ASEs in the LCC2 and

LCC9 models are identical to those described in the EMT gene

signature (Table 1). These results validate that ESRP1 regulates

the EMT-splicing program in ER+ breast cancer. However, the

EMT-splicing program is not sufficient to induce an EMT pheno-

type in this breast cancer subtype.

Novel functional role of ESRP1 knockdown on endocrine-
resistant breast cancer: impact of ESRP1 on metabolic pathways

To further identify and validate the functional role of ESRP1 knock-

down on endocrine-resistant breast cancer, we next analyzed the

differentially expressed genes in the 2C3 and 9C2 knockdown

models using the HTA 2.0 platform. In LCC2 versus 2C3 ESRP1

knockdown, the expression of 1,186 genes (1,263 transcripts) was

significantly altered, while 413 genes (432 transcripts) were signifi-

cantly regulated in the LCC9 versus 9C2 ESRP1 knockdown with an

FDR < 0.1. Volcano plots representing the distribution of the fold

changes (�2 > FC > 2, FDR < 0.1) of these genes are shown in

Fig 7A. Of these significant genes, 34 downregulated and 68 upregu-

lated (102 genes total) were shared by both the 2C3 and 9C2 ESRP1

knockdowns (Fig 7B). Using the DAVID Functional Annotation

Clustering Tool, we identified the biological processes that were

significantly altered in response to ESRP1 knockdown. The most

significant annotation clusters downregulated by ESRP1 knockdown

consisted of fatty acid metabolism/lipid metabolism (SCD, ACACA,

FASN, ACAT2, PLCH1, and HPGD) and oxidoreductase processes

(SCD, PHGDH, FASN, DHTKD1, and HPGD). Other clusters, such as

the Ubl conjugation pathway (NEDD4, FBXO27, UBE2S, and UBE2T)

and extracellular exosome cluster (genes including MUC1, TEX14,

CD44 NEDD4, and ACACA), remained significant. In contrast, glyco-

sylation processes (including B4GALT1, CRISP3, ATP1B1, PXDN,

and MPZL) and some cytokine activity (TNFRSF11B, GDF15, BMP7,

and TIMP1) were upregulated in ESRP1 knockdown cells versus

control resistant cells. Surprisingly, no major EMT- or invasion-

related genes were significantly altered at the gene level. Taken

together, we have demonstrated a novel functional impact of ESRP1
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Figure 4. A unique set of EMT genes are altered at the splicing level but not at the gene level.

A Donut charts for RNA-Seq analysis showing the differentially regulated alternative splicing events (ASEs) and their corresponding genes in ESRP1 knockdown cells
compared to control cells; SE: skipped exon, RI: retained intron, MXE: mutually exclusive exons, A5SS: alternative 50 splice site, and A3SS: alternative 30 splice site. The
“percent spliced in” (PSI or w) value was estimated. Differences in inclusion levels (Δw) between samples and their significance were calculated (P < 0.05 and
IDwI > 0.1). Circle 1: all ASEs; Circle 2: all genes corresponding to all ASEs; Circle 3: significant ASEs; Circle 4: significant genes corresponding to significantly altered
ASEs; Circle 5: significant ASEs with ESRP1 motifs; Circle 6: significant genes corresponding to significantly altered ASEs with ESRP1 motifs. ESRP binding motifs were
obtained from Dittmar et al [31] and analyzed based on the following assumption: The presence of the motif in the downstream region of an exon results in
inclusion of the exon, while upstream or intraexonic location leads to exclusion of the exon.

B Radar plot showing that the EMT gene signature was not altered at the gene level in the ESRP1 knockdown model (LCC2 set).
C Radar plot showing that the EMT gene signature was altered at the ASEs level (SE) in the ESRP1 knockdown model (LCC2 set).
D Radar plot showing that the EMT gene signature was not altered at the gene level in the ESRP1 knockdown model (LCC9 set).
E Radar plot showing that the EMT gene signature was altered at the ASEs level (SE) in the ESRP1 knockdown model (LCC9 set).

Source data are available online for this figure.
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on the regulation of tumor growth at the functional and molecular

levels independent of EMT.

We next compared the expression levels of key fatty acid meta-

bolism/lipid metabolism and oxidoreductase processes at the gene,

alternative splicing, and protein level. FASN, SCD, and PHGDH were

altered at the alternative splicing and protein levels in the ESRP1

knockdown cells (Table 2 and Appendix Figs S5 and S6). The same

exon inclusions based on the splicing index levels were significant

in both the tamoxifen- and fulvestrant-resistant models (see loca-

tions in Table 2). At the protein level, decreased expression of FASN

and SCD1 in knockdown cells was observed, particularly in the

tamoxifen-resistant (2C3 versus 2-control) model (Fig 7C). These

results may be specific to acquired tamoxifen-resistant cells, as

FASN and SCD1 protein levels remained the same in response to

ESRP1 knockdown in the T-47D breast cancer cell line

(Appendix Fig S1A). On the other hand, PHGDH levels decreased in

both MCF-7-derived tamoxifen- and fulvestrant-resistant cells as

well as in T-47D cells. The results from the overexpression of ESRP1

in the MCF-7 model suggested that this by itself may not be suffi-

cient to result in the altered expression of these metabolic genes.

To confirm the functional importance of ESRP1 in the regulation

of cellular metabolism, we performed further experiments that

Figure 5. Validation of the ASEs events of 10 EMT genes in response to ESRP1 knockdown using HTA 2.0 Splicing viewer (Transcriptome Analysis Console (TAC)
Software-Applied Biosystems/Thermo Fisher Scientific).

All Probe Selection Regions (PSRs) and Junctions are represented in the structural view with boxes that have the same size. An inclusion junction detects two neighboring

PSRs. The PSRs detected by an inclusion junction are linked and graphically represented as dotted lines. An exclusion junction detects PSRs that are apart from each other.

The PSRs detected by an exclusion junction are linked and graphically represented as dotted lines. Altered ASE for each corresponding gene has been highlighted as light blue

representing the altered PSR. Red color indicates the inclusion of an exon, whereas green color represents the skipping of an exon. The blue column indicates the alternative

splicing event at the listed location.

Source data are available online for this figure.
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analyzed the metabolic substrate flux in response to ESRP1 knock-

down in resistant cells. The methods used to assess the glycolysis

rate and the oxidation of major fuel substrates, glucose, glutamine,

and fatty acids have been previously described [33]. Using the XF

Extracellular Flux analyzer, we measured the two major energy-

producing pathways of cell-mitochondrial respiration through the

oxygen consumption rate (OCR) and the extracellular acidification

rate (ECAR), indicative of glycolysis, of the ESRP1 knockdown cells

compared to their control resistant cells in real time. These analyses

demonstrated that ESRP1 knockdown did not significantly alter the

glycolysis rate (ECAR) in either the tamoxifen-resistant or fulves-

trant-resistant models (Fig EV3A–D).

To compare the oxygen consumption rate (OCR) between the

control and ESRP1 knockdown cells, we measured baseline respira-

tion and spare respiration capacity, which is defined as the difference

between the basal and maximum respiration for energy production

through oxidative phosphorylation. ESRP1 knockdown significantly

increased the basal respiration and spare respiration capacity in the

tamoxifen-resistant cells (P < 0.0001, Mann–Whitney U-test) but not

in the fulvestrant-resistant cells (Fig EV3E). Furthermore, we

showed a significant decrease in glucose uptake in the ESRP1 knock-

down tamoxifen-resistant cells and T-47D ESRP1 knockdown cells

(P < 0.05 for both cell lines; Student’s t-test). We did not observe

any differences in the L-lactate levels (Appendix Fig S7A and B).

Taken together, these results suggest that ESRP1-mediated regu-

lation of metabolic pathways might be more important for tamox-

ifen resistance than fulvestrant resistance. Further analysis will

determine how ESRP1 controls the metabolic and OXPHOS path-

ways in tamoxifen resistance. Targeting these genes/pathways could

provide novel therapeutic approaches for the control of recurrence/

resistance to tamoxifen therapy in ER+ breast cancer.

Discussion

Accumulating evidence suggests the key role of splicing factors in

cancer, including breast cancer [16,34]. Splicing factors, RNA-

binding proteins that interact with specific RNA sequences or

Table 1. Alternative splicing events of the EMT 10-gene splicing signature using three different platforms in ER+ ESRP1 low and high states.

Gene
symbol

Exon location

Warzecha et al [19]
NCBI-36-hg18

Exon location
GRCh37

Type of
ASE in
Warzecha
et al in low
ESRP1

2C3 versus
2-control

9C2
versus
9-control

2C3
versus
2-control

9C2
versus
9-control

TCGA
SpliceSeq
(low versus
high ESRP1)

RNA-Seq HTA RNA-Seq

ARFGAP2 Chr11:47,150,836–
47,150,877

Chr11:47,194,261–
47,194,302

Skip NS NS Skip Skip NS

ARHGEF11 Chr1: 155,174,834–
155,174,929

Chr1;155,908,305–
156,908,210

Inc Inc Inc Inc Inc Inc

ENAH Chr1:223,759,316–
223,759,378

Chr1:225,692,755–
225,692,693

Skip Skip NS Skip NS Skip

FLNB Chr3:58,102,625–
58,102,696

Chr3:58,127,585–
58,127,656

Skip NS NS NS Skip NS

FNIP1 Chr5:131,074,170–
131,074,253

Chr5:131,046,354–
131,046,271

Skip NS NS NS NS Skip

MAGI1 Chr3:65,408,737–
65,408,772

Chr3:65,433,732–
65,433,697

Inc Skip NS Inc Inc NS

RALGPS2 Chr1:177,127,988–
177,128,065

Chr1:178,861,365–
178,861,442

Skip Skip Skip Skip Skip NS

SCRIB Chr8:144,961,710–
144,961,772

Chr8:144,889,784–
144,889,722

Inc Inc Inc Inc Inc Inc

SLC37A2 Chr11:124,461,310–
124,461,366

Chr11:124,956,100–
124,956,156

Skip NS NS NS NS NS

SLK Chr10:105,760,564–
105,760,656

Chr10:105,770,574–
105,770,666

Skip Skip Skip Skip Skip Skip

◀ Figure 6. TCGA SpliceSeq analysis using BRCA dataset in ESRP1high and ESRP1low tumors.

A The data were analyzed by categorizing the splice events into seven types: exon skip (ES), alternative 50 donor (AD), alternative 30 acceptor (AA), retained intron (RI),
mutually exclusive exons (ME), alternative first exon (AP), and alternative last exon (AT). The analysis of splice events was performed using the following filter criteria:
Min Gene RPKM ≥ 2, |dPSI| ≥ 0.1, P ≤ 0.02, Min Group Obs % > 0.85; RPKM-reads per kilobase of transcript per million aligned reads; and |dPSI|-absolute changes in
percent splicing (dPSI, ΔΨ). The events are presented as differential expression of splice events between ESRP1low and ESRP1high cases.

B TCGA splice graphs for the EMT signature genes in ESRP1high versus ESRP1low tumors. A splice graph of the gene’s exons is shaded based on the expression level and
shows the selected splice event outlined in red.

Source data are available online for this figure.
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C

Figure 7. Impact of ESRP1 knockdown on endocrine-resistant breast cancer.

A Volcano plots showing the distribution of significant gene expression changes using the HTA 2.0 platform.
B Differential gene expression analysis of ESRP1 knockdown compared to resistant control cells using HTA 2.0 platform; downregulated genes in ESRP1 knockdown (left

panel) and upregulated genes in ESRP1 knockdown (right panel) common in 2-control versus 2C3, and 9-control versus 9C2.
C Validation of the protein levels of FASN, SCD1, and PHGDH protein levels in ESRP1 knockdown versus control resistant cell lines using Western blot analysis. GAPDH

was used as the loading control. The data are representative of three individual biological replicates.

Source data are available online for this figure.
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motifs, may act as master regulators of gene expression and cellular

behavior. Deregulation of their expression affects gene expression

and alternative splicing of genes that contribute to breast cancer

development and progression. In this study, we demonstrate for the

first time that elevated levels of the splicing factor ESRP1 (epithelial

splicing regulatory protein 1) are associated with poor outcomes in

ER+ breast cancer using microarray-based BreastMark and RNA-

Seq-based TCGA datasets. These results are in contrast to a prior

report from Lu et al, [27] who analyzed all (subtypes) breast

cancers from the TCGA (n = 877). The larger number of cases in the

provisional TCGA and subtype-specific analysis could explain the

observed differences in breast cancer. This led us to analyze an

independent cohort of ER+ cancers with Oncotype Dx scores [22],

an established surrogate of chemo- and endocrine resistance in

breast cancer and a predictor for low and high recurrence cases.

The correlation of high ESRP1 expression with poor prognosis (high

recurrence score) was validated by RT–qPCR. Although ESRP2

(epithelial splicing regulatory protein 2), an associated protein with

ESRP1, was also elevated in high recurrence cases, its expression

did not correlate with outcomes in either the BreastMark or TCGA

datasets. This led us to the conclusion that ESRP1, but not ESRP2, is

an important player in the recurrence of ER+ breast cancer.

The biological relevance of ESRP1 in ER+ breast cancer was con-

firmed using ESRP1 knockdown in established resistant cell lines to

endocrine therapy, representing models of poor prognosis. This

analysis showed that the loss of ESRP1 in knockdown cells not only

decreased the colony formation in vitro but also decreased the

tumor growth in the xenograft models, highlighting the importance

of ESRP1 in controlling cancer growth. Low ESRP1 expression has

been associated with the development of EMT in ER-negative breast

cancer model (MDA-MB-231 cells) [17–19]. In our study, we did not

observe the development of a mesenchymal phenotype in response

to knockdown of ESRP1. In contrast, glandular differentiation (more

epithelial than parental cells) was maintained in the therapy-resis-

tant ER+ breast cancer cells. To confirm this rather surprising

finding, we assessed the classical EMT proteins and the key EMT-

TFs in knockdown cells. Protein level data confirmed the absence of

an EMT phenotype in the ESRP1 knockdown cells. Together, these

data suggest that the induction of EMT by ESRP1 is contextual and

may require the presence of appropriate background conditions.

ESRPs (ESRP1 and ESRP2) are major regulators of the EMT-spli-

cing program [17–19]. Our analysis of the ESRP1 splicing program

in these knockdown models confirmed that the alternative splicing

patterns of most of the EMT-splicing genes were consistent with

prior publications. The TCGA Splice-Seq in cases with low and high

ESRP1 (n = 100 each) confirmed that some of the ASEs observed in

the knockdown cells were identical to those observed in the human

ER+ breast tumors with low ESRP1 levels, validating the active role

of ESRP1 as a splicing factor in ER+ tumors. However, the lack of

overt EMT at the cellular, functional, or pathway levels suggests the

following: (i) In the absence of the appropriate settings, the ESRP1

splicing program may not be sufficient to cause morphological EMT;

(ii) in contrast to the MDA-MB-231 model, ESRP1 knockdown in

ER+ breast cancer promotes a differentiation effect; and (iii) high

ESRP1 and epithelialness promotes cell growth and invasiveness.

These findings are consistent with the dual role of splicing factors

such as ESRP1 based on the tissue and cancer type [35]. The results

of our study, based on the analysis of human breast tumors, suggest

that ESRP1-driven aggressiveness in ER+ breast cancer is indepen-

dent of EMT. This is consistent with data from Taube et al [36],

who have documented that the core EMT gene signature is not asso-

ciated with prognosis in breast cancer.

Furthermore, we identified a novel role for ESRP1 in ER+ breast

cancer cells that impacts tumor progression through the regulation

of genes involved in fatty acid/lipid metabolism and oxidation–

reduction processes. In particular, knockdown of ESRP1 decreased

the expression of key genes in these metabolic pathways. Dysregula-

tion of cellular metabolism has been included as one of the emerg-

ing hallmarks of cancer [23]. Altered metabolism can play a critical

role in cancer progression. During oncogenesis, the metabolic

programming of cancer is complex and requires multiple networks.

The key element of this process is the switch from oxidative meta-

bolism to glycolytic metabolism and the driving force of cancer

proliferation and survival. In this study, we provide the first experi-

mental evidence regarding the splicing factor ESRP1 contributing to

the dysregulation of cellular metabolism.

Fatty acid synthase (FASN) and stearoyl-CoA desaturase 1

(SCD1) are key proteins involved in the endogenous synthesis of

fatty acids and function as important cofactors in various biological

processes. Overexpression of FASN in breast cancer has been associ-

ated with significantly shorter disease-free periods and overall

survival [37–40]. Furthermore, FASN inhibition decreased cell

proliferation and cell viability by promoting apoptosis in hormone-

dependent breast cancer cells [41,42]. In addition, SCD1 catalyzes

Table 2. Alternative splicing events of the genes using HTA validation in ER+ ESRP1 low and high states.

Gene symbol

2C3 versus
2-control

9C2 versus
9-control

Exon locationa GRCh37

2C3 versus
2-control

9C2 versus
9-control

Gene level ASEs

FASN Down Down Chr17:80,055,997–80,056,106 Inc Inc

SCD Down Down Chr10;102,106,772–102,107,288 Inc Inc

PHGDH Down Down Chr1:120,202,421–120,202,536 Inc Inc

CD44 Down Down Multiple exon locations Skip Skip

CTNND1 (p120) NS NS Multiple exon locations Inc Inc

FGFR1 NS NS Multiple exon locations Skip No

FGFR2 Up NS Chr10:123,298,106–123,239,535 Inc No event

aSee Appendix Figs S5 and S6 for Alternative Splicing Events (ASEs) details specific to each gene.
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the conversion of saturated fatty acids into monounsaturated fatty

acids. The increased expression of SCD1 plays a crucial role in medi-

ating glucose versus fatty acid metabolism in the development and

progression of obesity [43]. High SCD1 expression is also associated

with shorter survival in ER+ and HER2+ breast cancer, but not in

ER� breast cancers [44]. We further confirmed the significant

decrease in FASN and SCD1 protein expression in tamoxifen-resis-

tant ESRP1 knockdown cells rather than fulvestrant-resistant ESRP1

knockdown cells.

We also verified a decrease in phosphoglycerate dehydrogenase

(PHGDH) protein levels in both tamoxifen- and fulvestrant-resistant

models. PHGDH catalyzes the first step in the serine biosynthesis

pathway. Suppression of PHGDH in cell lines with elevated PHGDH

expression results in a strong decrease in cell proliferation and a

reduction in serine synthesis [45]. Increased expression of PHGDH

was associated with breast cancer subtypes, and ectopic expression

of PHGDH in mammary epithelial cells disrupted acinar morphogen-

esis and induced other phenotypic alterations that may predispose

cells to transformation [46]. Decreased expression impaired prolifer-

ation in amplified cell lines. Indeed, Samanta et al [47] reported that

PHGDH knockdown sensitized both ER+ and ER� breast cancer

lines to chemotherapy, resulting in increased mitochondrial reactive

oxygen species (ROS) and apoptosis and loss of chemotherapy-

induced breast cancer stem cells (BCSC) enrichment. They

suggested a role for PHGDH in the formation of secondary (recur-

rent or metastatic) tumors, with potential implications for therapeu-

tic targeting of advanced cancers.

ESRP1 knockdown did not significantly alter the glycolysis rate

(ECAR) in either the tamoxifen-resistant or fulvestrant-resistant

models. However, ESRP1 knockdown significantly increased the

basal respiration and spare respiration capacity, particularly in the

tamoxifen-resistant cells. These promising results warrant further

investigation into the complex nature of ESRP1 knockdown in

metabolic pathways and oxidative phosphorylation in tamoxifen

resistance.

We next validated the changes in metabolic genes that were

observed in the RNA-Seq data at both the mRNA (probed-based

method HTA analysis) and protein levels (Western blot analysis) in

response to ESRP1 knockdown, particularly in the tamoxifen-resis-

tant cells. Some of the variability between the RNA-Seq and HTA

analysis may be due to the differences between the two platforms.

The depth of the RNA-Seq (30 million) may not have been enough

to obtain the same results. Indeed, Nazarov et al [48] reported that

the stochastic variability was higher for the sequencing data than

for microarray data due to the lack of reads for the short and low-

abundance genes. This usually reduces the number of differentially

expressed genes and genes with predictive potential for RNA-Seq

compared to microarray data. HTA 2.0 is a probe-based technology

(10 probes per exon and 4 probes per exon-exon splice junction)

and is independent of the depth bias of RNA-Seq.

In conclusion, this study documents novel roles of ESRP1 in

modifying the behavior of ER+ cells. Although we could confirm its

role in the alternative splicing of EMT-related genes, this did not

result in mesenchymal transformation. Knockdown was associated

with epithelial differentiation and decreased growth by alternative

mechanisms, such as changes in fatty acid and lipid metabolism.

These data could form the basis of new avenues for the control of

recurrence/resistance to therapies in ER+ breast cancer.

Materials and Methods

Analysis of publicly available databases

The prognostic value of ESRP1 and ESRP2 was evaluated using

BreastMark, a tool for examining putative gene prognostic markers

in breast cancer [21]. Its algorithm integrates the gene expression

and survival data from 26 datasets from 12 different microarray

platforms corresponding to approximately 17,000 genes in up to

4,738 samples. The software allows different survival end points to

be analyzed separately. Median expression was used to dichotomize

the data, allowing stratification into high and low groups within

each of the 26 individual datasets. The interface is available on a

publicly accessible web server (BreastMark: Breast Cancer Survival

Analysis Tool [http://glados.ucd.ie/BreastMark/index.html]). The

software uses CGI to link the web server with the R/perl-based algo-

rithm. All calculations are carried out in real time.

Analysis of the Cancer Genome Atlas (TCGA)

Patients with breast cancer were categorized based on their ER

status (n = 924; 656 ER�positive). The clinical information for each

patient was also obtained. The normalized expression of ESRP1 and

ESRP2 (Level 3 data) was analyzed in 924 breast cancer patients

enrolled in The Cancer Genome Atlas (TCGA) database Breast Inva-

sive Carcinoma (BRCA) (https://portal.gdc.cancer.gov/projects/

TCGA-BRCA) study with subtype classification. To model survival,

gene expression at or below median was considered low and above

median was considered high. Overall survival was calculated from

the date of initial diagnosis to disease-specific deaths (patients

whose vital status is termed dead) and months to last follow-up (pa-

tients who are alive). The “survival” package in R (R Foundation for

Statistical Computing) was used for statistical analyses (log rank

test) and to generate Kaplan–Meier curves.

Oncotype DX samples

All protocols were reviewed and approved by the Institutional

Review Board (IRB) of Indiana University. Samples and clinical

records were anonymized prior to access by the authors and linked

with a numerical identifier. The requirement for informed consent

was waived by the IRB. Fifty-nine archival formalin-fixed, paraffin-

embedded (FFPE) tumor blocks were obtained from patients with

ER-positive node-negative breast carcinomas at the Indiana Univer-

sity Simon Cancer Center based on their Oncotype DX RS (19 LS, 20

IS, and 20 HS). Demographic and clinical characteristics of the

patients were acquired from medical charts as described previously

[15].

Breast cancer cell lines

MCF-7-AZ control (endocrine therapy-sensitive), MCF-7-LCC2

(LCC2; tamoxifen-resistant), and MCF-7-LCC9 (LCC9; fulvestrant

(ICI 182,780) and tamoxifen cross-resistant) cell lines were kind

gifts from Dr. R. Clarke (Georgetown University Medical School,

Washington DC) [49,50]. MCF-7 and T-47D cell lines were

purchased from American Type Culture Collection (ATCC, Manas-

sas, VA). Cell lines were carefully maintained in a humidified tissue
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culture incubator at 37°C in a 5% CO2:95% air atmosphere, and

stocks of the earliest passage cells were stored. The cell lines were

grown in phenol red-free DMEM containing 5% charcoal-stripped

fetal calf serum (CCS) and 100 mg/ml penicillin at least 4 days

before the experiments were performed.

RNA isolation and sample quality assessment

Total RNA was extracted from 10-lm-thick sections of archival

paraffin blocks using the RecoverAllTMTotal Nucleic Acid Isolation

Kit (Thermo Fisher Scientific, Wilmington, DE) as described previ-

ously [15]. For breast cancer cell lines, the RNeasy isolation kit was

used according to the manufacturer’s instructions (Qiagen, German-

town, MD). RNA was treated with Turbo DNase (Thermo Fisher

Scientific, Wilmington, DE). The quality of RNA was assessed using

the Nanodrop� ND-1000 spectrophotometer (Thermo Fisher Scien-

tific) and the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA).

Quantitative reverse transcription–polymerase chain reaction
(RT–qPCR) of breast cancer cell lines and FFPE samples

Total RNA was reverse-transcribed using the High Capacity cDNA

Reverse Transcription kit (Thermo Fisher Scientific) according the

manufacturer’s instructions. The mRNA levels of ESRP1

(Hs00936420_m1) were analyzed by real-time RT–qPCR using

TaqMan gene expression assays on an ABI Prism 7900 platform

according to the manufacturer’s instructions (Applied Biosystems/

Thermo Fisher Scientific). Actin (ACTB; Hs00357333_g1) and GUSB

(Hs99999908_m1) were used as endogenous controls for normaliza-

tion purposes. All RT–qPCR mixtures from tumor blocks and breast

cancer cell lines were performed in duplicate and triplicate, respec-

tively. For breast cancer cell lines, all experiments were the average

of three independent sets. The relative quantification of the gene

expression changes was analyzed according to the DDCt method

using the Applied Biosystems DataAssistTM Software v3.0. All

graphs were generated using GraphPad Prism 5 software. The error

bars were calculated and represented in terms of the mean � SD.

ESRP1 knockdown in endocrine-resistant cell lines

To stably knockdown ESRP1 expression in the LCC2, LCC9, and T-

47D cells, we performed lentiviral delivery of Mission TRC human

shRNA constructs (pLKO.1 shRNA) according to the manufacturer’s

instructions (Sigma, St. Louis, MO). The following shRNA-Mission

plasmids were used: pLKO.1 control vector (SHC001) and shRNA

ESRP1 (TRCN0000149820, TRCN0000146588). Briefly, 1 × 106 HEK

293 cells were transfected with 2.6 lg each of shRNA- ESRP1 and

control shRNA plasmids and 10 ll packaging mix (Sigma, St. Luis,

MO) using 16 ll FuGENE HD transfection reagent (Roche, Indi-

anapolis, IN). After 48-h incubation, the medium containing the

newly formed viral particles was collected, filtered with millex-HV

0.45-lm filters (Millipore, Burlington, MA), and added to 1.6 ×104

LCC2, LCC9 or T-47D cells together with 8 lg/ml polybrene solution

(Sigma). After 24 h of infection, the cells were washed with PBS

and MEM containing 2 lg/ml puromycin (Invitrogen). Infected cells

were selected in Puromycin media and further passaged in culture

to obtain stable clones that represent ESRP1 knockdown cells.

Overexpression of ESRP1 in MCF-7 breast cancer cell line was

performed using GenScript’s GenEZTMORF ESRP1 construct (ESRP1;

NM_017697). GenScript’s GenEZTMORF ESRP1 was cloned into the

mammalian expression cloning vector pcDNA3.1+/C-(K)-DYK using

CloneEZTMcloning technology according to the manufacturer’s

instructions (GenScript Piscataway, NJ). Stable cells with the control

vector (pcDNA3.1+/C-(K)-DYK vector only) or vector with ESRP1

construct were generated in MCF-7 cells. Knockdown or overexpres-

sion of ESRP1 expression was verified using RT–qPCR and Western

blot assays as described in the Materials and Methods.

Anchorage-independent growth assay

Anchorage-independent growth was determined using the soft agar

colony formation (CytoSelectTM Cell Transformation Assay; Cell

Biolabs Inc., San Diego, CA) according to the manufacturer’s instruc-

tions. Briefly, cells were incubated 8 days in semisolid agar media

before being solubilized, lysed, and detected by the CyQuantR� GR

Dye in a fluorescence plate reader under charcoal-stripped media

(CSM) or in response to E2 (10�10 M, b-estradiol) or 10% fetal

bovine serum (FBS).

Crystal violet assay

Human breast cancer cells (1 × 103 cells/ml) in DMEM containing

5% charcoal-stripped media were plated in 24-well tissue culture

plates. On day 1 after plating and every 3 days thereafter, cells were

treated with E2 alone (10�10 M, Sigma, St. Louis, MO), TAM alone

(4-hydroxytamoxifen; 10�6 M, Sigma, St. Louis, MO), or in combi-

nation with E2 and TAM. The LCC9 set was also tested for ICI alone

(ICI 182,780-fulvestrant, 10�9 M, and in combination with E2 and

ICI). On day 6, the media were aspirated, and the cells were stained

with crystal violet (0.2% crystal violet staining solution in buffered

formalin pH = 7.0). Cells were permeabilized using citrate buffer,

and absorbance was read at 560 nm on a plate reader.

Morphology assessment

Cells were grown in 8-well slide chambers (MatTek�) in CSS media

for 4 days. The slides were then fixed in 60% ethanol and stained

with H&E stains. The slides were examined under an Olympus BX41

microscope, and images were obtained using a DP-72 camera and

CellSensTMsoftware at 40× magnification.

Orthotopic xenograft models

Six- to eight-week-old female athymic nude mice (Harlan Sprague

Dawley, Indianapolis, IN) were acclimatized for 3–7 days. All

animals were housed in an SPF (specific pathogen-free) facility at

Indiana University. A controlled-release E2 pellet (0.72 mg E2,

60-day formulation; Innovative Research of America, Sarasota,

FL) was injected subcutaneously (s.c.) via a sterile 14-gauge

trocar 24 h before tumor implantation. Five million cells for both

control cells (2-control and 9-control) and ESRP1 knockdown

cells (2C3 and 9C2) were implanted into mammary fat pads.

Tumors were measured weekly using calipers for external

measurements. Tumor volume was calculated as L × W2/2,

where L is length and W is width. All animal experiments were
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performed under a protocol approved by the Indiana University

Institutional Animal Care and Use Committee (IU IACUC). The

investigators were blinded to group allocation during data collec-

tion and analysis.

RNA sequencing with rRNA-depletion TruSeq RNA sample prep
kit, library construction, cluster generation, and HiSeq 2500

Paired-end RNA sequencing (RNA-Seq) was performed using the

Illumina HiSeq 2500 platform by SeqWright Genomic Services

(Houston, TX) according to the manufacturer’s instructions (Illu-

mina, San Diego, CA). Briefly, the first step involved library prepa-

ration using the TruSeq Stranded Total RNA kit. Ribosomal RNAs

(rRNAs) were depleted from total RNA using Ribo-Zero Kits. After

purification and RNA fragmentation, cleaved RNA fragments were

copied into first strand cDNA using reverse transcriptase and

random primers, followed by second-strand cDNA synthesis using

DNA Polymerase I and RNase H. A single “A” base was added to

cDNA fragments with subsequent ligation of the adapter. The prod-

ucts were purified and enriched to create the final cDNA library.

Using the TruSeq Paired-End (PE) Cluster kit, library samples were

amplified to create clonal clusters, and RNA deep sequencing

(TruSeq SBS kit-200 cycles) was performed on the HiSeq 2500 with

the RNA isolated from each sample as described above.

Quality control of protocols and analysis tools using TruSeq RNA
sequencing (Illumina-Hi Seq Platform)

The quality control analysis of the sample library and quantification

of the DNA library templates were validated according to the

manufacturer’s instructions. Briefly, the quality control of the

library sample was checked for the size, purity, and concentration

using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA). In addition, quantitative standards such as RNA spike-

ins were used to calibrate quantification, sensitivity, coverage, and

linearity. Sequencing was performed using total RNAs to a depth of

30 million reads.

Computational methods for RNA-Seq data analysis

Data from total RNA-Seq were processed as described below. Raw

FASTQ sequences were generated and demultiplexed using the Illu-

mina CASAVA pipeline. The FastQC (http://www.bioinformatics.bab

raham.ac.uk/projects/fastqc) and FASTX toolkits (http://hannonlab.c

shl.edu/fastx_toolkit) were used for a quality check to ensure that the

FASTQ reads were in the entirely normal range and to preprocess the

reads prior to mapping. Briefly, the FASTX clipper tool was employed

to remove the Illumina 3 prime adaptor sequences. The postclipped

reads were mapped to the human genome (hg19), and the RNA-Seq-

based gene expression levels (FPKM; fragments per kilobase of exon

per million fragments mapped) were subsequently calculated using

the TopHat/Cufflinks [51,52] framework to increase the mapping

coverage and to generate the SAM/BAM files.

Identifying differential AS events

Differential alternative splicing events between the knockdown and

control cell lines (2C3 versus 2-control and 9C2 versus 9-control)

were identified using MATS.3.0.8 [28–30,53]. Differential splicing

events (defined as P < 0.05 and Δw < 5%) were identified between

the control and knockdown sets.

Identifying ESRP motifs

The splicing map of ESRPs is largely dependent on their binding to

the proximal regions of the target exons, viz upstream, downstream,

or exonic. The position weight matrices (PWM) of the ESRP binding

motifs enriched in the 250 nt upstream, 250 nt downstream, and

exonic regions of ESRP-regulated exons were obtained from

Warzecha et al and Dittmar et al [17–19,31]. These motifs were then

screened in the upstream, downstream, and exonic regions of dif-

ferentially present exons in the control versus knockdown cell lines

using FIMO, a motif prediction tool available in the MEME suite [53].

The motifs identified at P < 0.001 were considered to be significant.

Human Transcriptome Array 2.0 assay and validation

The RNAs from the control and knockdown cells were sent to the

Applied Biosystems/Thermo Fisher Scientific Service laboratory

(Santa Clara, CA). The Ambion� Whole-Transcript (WT) Expression

Kit and the GeneChip WT Terminal Labeling and Controls Reagent

Kits were used to prepare the samples. GeneChip Human Transcrip-

tome Array 2.0 was performed according to Applied Biosystems/

Thermo Fisher Scientific’s instructions. Probe cell intensity (CEL)

data generated from the Human Transcriptome Arrays were analyzed

in Transcriptome Analysis Console (TAC) Software to obtain a list of

the differentially expressed genes and alternative splicing events.

TAC software also provided the visualization of genes, exons, junc-

tions, and transcript isoforms. TAC Software was downloaded free

from the Applied Biosystems/Thermo Fisher Scientific website. To

ensure uniform coverage of the transcriptome, the GeneChip Human

Transcriptome Array 2.0 was designed with approximately ten probes

per exon and four probes per exon-exon splice junction. The probes

are all arranged into probe sets that translate and summarize the data

into gene-level, exon-level, and splice-junction probe sets.

TCGA SpliceSeq validation using BRCA dataset

We validated our predictions using the whole exome sequencing

data of breast cancer patients deposited in The Cancer Genome Atlas

Breast Invasive Carcinoma (TCGA-BRCA). We identified 100 Lumi-

nal A samples with extremely low levels of ESRP1 (ESRP1low) and

100 Luminal B samples with high levels of ESRP1 (ESRP1high). The

splicing pattern in these cases was analyzed in TCGA SpliceSeq

using BRCA dataset (http://projects.insilico.us.com/TCGASplice

Seq/). This resource is designed for the investigation of cross-tumor

and tumor-normal alterations in mRNA splicing patterns of TCGA-

BRCA RNA-Seq data [32].

DAVID functional analysis

The functional enrichment analyses were performed using the

DAVID functional annotation tool (http://david.abcc.ncifcrf.gov/).

We identified differentially expressed genes in HTA between the

LCC2 (2-control versus 2C3) and LCC9 (9-control versus 9C2) cells

(FDR < 0.1) and looked for enrichment in the following annotation
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categories: cellular components (GOTERM_CC_FAT), molecular

functions (GOTERM_MF_FAT) or biological processes (GOTERM_

BP_FAT). The clusters are ordered by group enrichment score.

Significant annotation groups were determined by group enrichment

scores ≤ 0.05 (equivalent to 1.3 in minus log scale).

Agilent Seahorse XFp cell energy phenotype assays

The Seahorse XFp Cell Energy Phenotype Test kit is an assay that

simultaneously measures the two major energy-producing pathways

in live cells, mitochondrial respiration, and glycolysis, allowing the

rapid determination of energy phenotypes of cells and investigation

of metabolic switching. Based on the results of the Seahorse XFp

Cell Energy Phenotype Assay, either the Agilent Seahorse XF Cell

Mito Stress test and/or Agilent Seahorse XF Glycolysis Stress are

sequentially performed. The XF Cell Mito Stress test determines

mitochondrial function by directly measuring the oxygen consump-

tion rate (OCR) of cells. The Agilent Seahorse XF Glycolysis Stress

test directly measures the acidification rate and reports this as

ECAR. All OCR and ECAR assays were performed according to the

instructions of Agilent Technologies (Santa Clara, CA). The results

presented are the combination of three independent assays, and

two-way ANOVA analyses were performed using GraphPad soft-

ware (P < 0.05, statistically significant).

Western blot analysis

The protein lysates were prepared, and equal amounts of protein

were subjected to SDS–PAGE and Western blot analysis as described

previously [54]. The Bio-Rad DC-Protein assay kit (Bio-Rad, Hercules,

CA) was used to determine protein concentrations. Blots were incu-

bated with antibodies against CDH1, VIM, SLUG, SNAIL, SNAIL2,

CLAUDIN 1, ZEB1, and ZEB2 (Cell Signaling Technology, Danvers,

MA), FASN (BD Biosciences, San Jose, CA), SCD1 (Alpha Diagnostic

International Inc., San Antonio, TX), and PHGDH (Epigentek, Farm-

ingdale, NY). Antibodies against GAPDH were used as the loading

control (GeneTex, Inc., Irvine, CA). Protein bands were visualized by

SuperSignalTMWest Pico PLUS Chemiluminescent Substrate kit (Amer-

sham, Piscataway, NJ) and Amersham Imager 600 GE Healthcare Life

Sciences (GE Healthcare Bio-Sciences, Pittsburgh, PA). The data are

representative of three individual assay sets.

Statistical analysis

In vitro experiments

Two-way ANOVA tests were used for statistical analysis by

GraphPad Prism 5.0 and Microsoft Excel. All results are representa-

tive of three independent biological replicates and expressed as

mean values SD. In all cases, differences were considered to be

statistically significant at P < 0.05.

Kaplan–Meier curves

BreastMark: Breast Cancer Survival Analysis Tool uses the software

CGI (the web server with the R/perl-based algorithm) to calculate

the P-values for the endpoint “overall survival” using log rank test.

TCGA-BRCA Kaplan–Meier curves: A log rank test was used to

calculate P-values for the endpoint “overall survival” using the

“survival” package in R (R Foundation for Statistical Computing).

Cell cycle analysis

Cell cycle distribution was measured in LCC9 and LCC2 cells trans-

duced with ESRP1 shRNA or nontargeting control shRNA. Cells

were harvested at 24 and 48 h after transfection, suspended in PBS,

and fixed in 70% ethanol. Then, the DNA content was evaluated

after propidium iodide staining. Fluorescence-activated cell-sorting

analysis was carried out using a FACScan flow cytometer (Beckton

Dickinson) and CellQuest software.

Apoptosis assay

The PE Annexin V Apoptosis Detection Kit I (BD Biosciences) was

used with flow cytometry according to the manufacturer’s instruc-

tions. Briefly, ESRP1 shRNA and control shRNA cells (5 × 105 cells/

ml) were harvested, washed in PBS, and pelleted by centrifugation.

The cells were suspended in 1× binding buffer, and then, 5 ll
Annexin V fluorescein isothiocyanate was added. After 15 min,

10 ll propidium iodide was added, and the suspension was incu-

bated in the dark at room temperature for 15 min. Binding buffer

(1×; 400 ll) was added to the suspension and gently vortexed. The

cells were analyzed using a FACScan flow cytometer. The numbers

show the percentages of cells in each quadrant (LL—lower left:

intact cells; LR—lower right: early apoptotic cells; UL—upper left:

necrotic cells; and UR—upper right: late apoptotic or necrotic cells).

Invasion assay

The Boyden in vitro invasion assay was performed as described

previously [55]. Briefly, cells were plated in phenol red free MEM

with 5% charcoal-stripped fetal calf serum for 48 h and switched to

1% serum media for 24 h. The cells were transferred to the upper

chamber of the phenol red free Matrigel-coated transwell plates and

allowed to migrate toward 1% FBS, 10% FBS or E2 (17 beta-estra-

diol; 10�10 M) in the lower chamber for 72 h. The cell invasion was

evaluated after DiffQuick staining by counting the cells in four

randomly chosen fields of filters. The results are representative of

the three individual experiments performed in triplicate.

Quantitative reverse transcription–polymerase chain reaction
(RT–qPCR) of CD44 splice variants

Total RNAs were reverse-transcribed using the High Capacity

cDNA Reverse Transcription kit (Thermo Fisher Scientific, Wilm-

ington, DE) according to the manufacturer’s instructions. The

mRNA levels of CD44-all transcript (HS99999195_m1), CD44s

(Hs01081473_m1), and CD44v2-v10 (Hs01075866_m1) were

chosen based on the study by Olsson et al [25] and analyzed by

real-time RT–qPCR using TaqMan gene expression assays on an

ABI Prism 7900 platform according to the manufacturer’s instruc-

tions (Applied Biosystems/Thermo Fisher Scientific). Actin

(ACTB; Hs00357333_g1) was used as an endogenous control for

normalization purposes. All RT–qPCR mixtures from the indicated

breast cancer cell lines were performed in triplicate (*see Materi-

als and Methods for statistical analysis). For the breast cancer

cell lines, all the experiments were the average of three indepen-

dent sets. The relative quantification of the gene expression

changes was analyzed according to the DDCt method using the
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Applied Biosystems DataAssistTM Software v3.0. All graphs were

generated using GraphPad Prism 5 software (two-way ANOVA). The

error bars were calculated and represented in terms of mean � SD.

Glucose uptake and L-lactate levels

The glucose uptake assay was performed using the Glucose Uptake

Assay Kit (Abcam, #ab136955), and the lactate production assay

was performed using the L-Lactate Assay Kit (Abcam, #ab65331)

according to the manufacturer’s protocol. The results were normal-

ized by the protein amounts in each assay.

Data availability

The RNA-Seq data (.bam files) for LCC2 (2-control and ESRP1

knockdown-2C3 cell lines) and LCC9 (9-control and ESRP1 knock-

down-9C2 cell lines) sets were deposited at GEO under accession

GSE125355 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE125355).

Expanded View for this article is available online.
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