192 research outputs found

    SEISMIC SAFETY OF LOW DUCTILITY STRUCTURES USED IN SPAIN

    Get PDF
    The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behaviour. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures

    Seismic performance of waffled-slab floor buildings

    Get PDF
     The codes used in seismic design of waffled-slab floors buildings (WSFB), such as the Spanish NCSE-02 earthquake-resistant design code, assign them restricted ductility, utilise linear structural analysis based on modal analysis, but also consider the structural ductility concept. Uncertainties arise whenever these codes are applied to the special case of buildings with waffled-slab floors, the ductility of which is doubtful. In many cases, during earthquakes, buildings with restricted ductility are unable to reach the ductility values assumed in the design process, although they may exhibit adequate values of overstrength. This paper therefore studies typical WSFB by applying static incremental non-linear analysis procedures (pushover analysis) in order to calculate their actual structural ductility and overstrength values. Fragility curves corresponding to different damage states and damage probability matrices are also calculated and compared with those of moment-resisting frame buildings (MRFB) in order to obtain useful conclusions for earthquake resistant design. One of the most relevant conclusions of this article is that the use of a better confinement and of ductile steel can only improve the seismic behaviour of MRFB but not that of WSFB

    NON LINEAR STRUCTURAL ANALYSIS. APPLICATION FOR EVALUATING SEISMIC SAFETY

    Get PDF
    Performance-Based Design is accepted commonly as the most advanced design and evaluation approach. However, its successful application depends on the ability to accurately estimate the parameters of structural response. The determination of these parameters requires applying analysis procedures where the non-linear behavior features of structures are included. This chapter presents and discusses these features of non-linear behavior and how they are incorporated in the process of static or dynamic structural analyses. Non-linear analysis allows obtaining from the seismic response significant structural response parameters such as ductility, overstrength, response reduction factor and damage thresholds. In order to illustrate the application of the non-linear analysis procedures, a set of concrete-reinforced moment-resisting framed buildings with various numbers of levels, was designed according to ACI-318 for high and very high level of seismic hazard. Their seismic safety is studied using both the static and dynamic non-linear analyses

    Computational simulation of the seismic response of buildings with energy dissipating devices

    Get PDF
    In this work, the nonlinear dynamic response of RC buildings with energy dissipating devices is studied using advanced computational techniques. A fully geometric and constitutive nonlinear model is used for describing the dynamic behavior of structures. The equations of motion are expressed in terms of cross sectional forces and strains and its weak form is solved using the displacement based finite element method. A suitable version of Newmark’s scheme is used in updating the kinematics variables in a classical Newton type iterative scheme. Material points of the cross section are assumed to be composed of several simple materials with their own constitutive laws. The mixing theory is used to treat the resulting composite. A specific finite element based on the beam theory is proposed for the dissipators including constitutive relations. Finally, several numerical tests are carried out to validate the proposed model

    Strong mixed-integer formulations for the floor layout problem

    Get PDF
    The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes a systematic approach to constructing MIP formulations and valid inequalities for the FLP that unifies and recovers all known formulations for it. In addition, the approach yields new formulations that can provide a significant computational advantage and can solve previously unsolved instances. While the construction approach focuses on the FLP, it also exemplifies generic formulation techniques that should prove useful for broader classes of problems.United States. National Science Foundation. Graduate Research Fellowship Program (Grant 1122374)United States. National Science Foundation. Graduate Research Fellowship Program (Grant CMMI-1351619

    Beating the SDP bound for the floor layout problem: A simple combinatorial idea

    Get PDF
    For many mixed-integer programming (MIP) problems, high-quality dual bounds can be obtained either through advanced formulation techniques coupled with a state-of-the-art MIP solver, or through semi-definite programming (SDP) relaxation hierarchies. In this paper, we introduce an alternative bounding approach that exploits the ‘combinatorial implosion’ effect by solving portions of the original problem and aggregating this information to obtain a global dual bound. We apply this technique to the one-dimensional and two-dimensional floor layout problems and compare it with the bounds generated by both state-of-the-art MIP solvers and by SDP relaxations. Specifically, we prove that the bounds obtained through the proposed technique are at least as good as those obtained through SDP relaxations, and present computational results that these bounds can be significantly stronger and easier to compute than these alternative strategies, particularly for very difficult problem instances.United States. National Science Foundation. Graduate Research Fellowship Program (Grant 1122374)United States. National Science Foundation. Graduate Research Fellowship Program (Grant CMMI-1351619

    On the Chvátal–Gomory closure of a compact convex set

    Get PDF
    In this paper, we show that the Chvátal–Gomory closure of any compact convex set is a rational polytope. This resolves an open question of Schrijver (Ann Discret Math 9:291–296, 1980) for irrational polytopes, and generalizes the same result for the case of rational polytopes (Schrijver in Ann Discret Math 9:291–296, 1980), rational ellipsoids (Dey and Vielma in IPCO XIV, Lecture Notes in Computer Science, vol 6080. Springer, Berlin, pp 327–340, 2010) and strictly convex bodies (Dadush et al. in Math Oper Res 36:227–239, 2011). An extended abstract of this paper appeared in [6]. After the completion of this work, it has been brought to our notice that the polyhedrality of the Chvátal–Gomory closure for irrational polytopes has recently been shown independently by Dunkel and Schulz [9]. The proof presented in this paper has been obtained independently.United States. National Science Foundation. (Grant CMMI-1030662)United States. National Science Foundation. (Grant CMMI-1030422
    • …
    corecore