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ABSTRACT: In this work, the nonlinear dynamic response of RC buildings with energy
dissipating devices is studied using advanced computational techniques. A fully geometric and
constitutive nonlinear model is used for describing the dynamic behavior of structures. The
equations of motion are expressed in terms of cross sectional forces and strains and its weak form
is solved using the displacement based finite element method. A suitable version of Newmark’s
scheme is used in updating the kinematics variables in a classical Newton type iterative scheme.
Material points of the cross section are assumed to be composed of several simple materials with
their own constitutive laws. The mixing theory is used to treat the resulting composite. A specific
finite element based on the beam theory is proposed for the dissipators including constitutive
relations. Finally, several numerical tests are carried out to validate the proposed model.

1 Introduction

Conventional seismic design practice permits designing reinforced concrete (RC) struc-
tures for forces lower than those expected from the elastic response on the premise that
the structural design assures significant structural ductility Hanson et al. (1993). Fre-
quently, the dissipative zones are located near the beam-column joints and, due to cyclic
inelastic incursions during earthquakes, several structural members can suffer a great
amount of damage. This situation is generally considered economically acceptable if
life safety and collapse prevention are achieved.

In the last decades, new techniques based on adding devices to the buildings with the
main objective of dissipating the energy exerted by the earthquake and alleviating the
ductility demand on primary structural elements have improved the seismic behavior of
the structures Soong & Dargush (1997). The purpose is to control the seismic response
of the buildings by means of a set of dissipating devices which constitutes the control
system, adequately located in the structure. In the case of passive energy dissipating
devices (EDD), an important part of the energy input is absorbed and dissipated;
therefore, concentrating the nonlinear phenomenon in the devices without the need of
an external energy supply.

Several works showing the ability of EDDs in controlling the seismic response of
structures are available; for example, in reference Fu & Kasai (2002) the response of
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framed structures equipped with viscoelastic and viscous devices is compared; in ref-
erence Kasai et al. (1998) an approximated method is used to carry out a comparative
study considering metallic and viscous devices. Aiken (1996) presents the contribu-
tion of the extra energy dissipation due to EDDs as an equivalent damping added to
the linear bare structure and gives displacement reduction factors as a function of the
added damping ratio. A critical review of reduction factors and design force levels can
be consulted in reference Lin & Chang (2003). A method for the preliminary design
of passively controlled buildings is presented in reference Connor et al. (1997). Lin &
Chopra (2003) study the accuracy of estimating the dynamic response of asymmetric
buildings equipped with EDDs, when they are replaced by their energetic equivalent
viscous dampers. Other procedures for the analysis and design of structures with EDDs
can be consulted in reference Clark et al. (1999).

Today, only a few countries have codes to design RC buildings with EDDs. Particu-
larly, in United States the US Federal Emergency Management Agency (FEMA) gives
code provisions and standards for the design of EDDs devices to be used in buildings.
In Europe, the efforts have been focused on developing codes for base isolation but
not for the use of EDDs.

The design methods proposed for RC structures are mainly based on supposing that
the behavior of the bare structure remains elastic, while the energy dissipation relies
on the control system. However, experimental and theoretical evidence show that
inelastic behavior can also occur in the structural elements during severe earthquakes
(Shen & Soong 2005). In order to perform a precise dynamic nonlinear analysis of
passively controlled buildings sophisticated numerical tools became are necessary for
both academics and practitioners, Mata et al. (2006).

There is agreement that fully three-dimensional numerical techniques constitute the
most precise tools for the simulation of the the seismic behavior of RC buildings.
However, the computing time usually required for real structures makes many appli-
cations unpractical. Considering that most of the elements in RC buildings are columns
and beams, one dimensional formulation for structural elements appear as a solution
combining both numerical precision and reasonable computational costs Mata et al.
(2007b). Experimental evidence shows that inelasticity in beam elements can be for-
mulated in terms of cross sectional quantities, Bayrak et al. (2001). Some formulations
of this type have been extended for considering geometric nonlinearities, Simo et al.
(1984). An additional refinement is obtained considering inhomogeneous distributions
of materials on arbitrarily shaped beam cross sections, Kumar et al. (2004). In this
case, the constitutive relationship at cross sectional level is deduced by integration and,
therefore, the mechanical behavior of beams with complex combinations of materials
can be simulated.

Formulations for beams considering both constitutive and geometric nonlinearity
are rather scarce; most of the geometrically nonlinear models are limited to the elastic
case, Ibrahimbegovic (1995) and the inelastic behavior has been mainly restricted to
plasticity, Simo et al. (1984). Recently, Mata et al. (2007b, 2008a) have extended the
geometrically exact formulation for beams due to Reissner-Simo (Reissner 1973, Simo
1985, Simo & Vu-Quoc 1988) to an arbitrary distribution of composite materials on
the cross sections for the static and dynamic cases.

From the numerical point of view, EDDs usually have been described in a global sense
by means of force–displacement or moment–curvature relationships, Soong & Dargush



Tsompanakis-2-ch017.tex 26/9/2008 15: 3 Page 257

Computat iona l s imu la t ion of the se i smic response of bu i ld ings 257

(1997), which attempt to capture appropriately the energy dissipating capacity of
the devices (see Mata et al. 2007a and 2008b). The inclusion of EDDs in software
packages for the seismic analysis of RC structures is frequently done by means of
linking elements equipped with the mentioned nonlinear relationships. The relative
displacement and/or rotation between the anchorage points activate the dissipative
mechanisms of the device.

In this work, a fully geometric and constitutive nonlinear formulation for beam
elements is developed. A fiber–like approach is used for representing arbitrary distribu-
tions of composite materials on the plane beam cross sections. EDDs are considered as
beam elements without rotational degrees of freedom. Thermodynamically consistent
constitutive laws are used for concrete, longitudinal and transversal steel reinforce-
ments and EDDs. The mixing rule is employed for the treatment of the resulting com-
posite. A brief description of the damage indices capable of estimate the remaining load
carrying capacity of the buildings is also given. Finally, the results obtained from numer-
ical simulations showing the ability of the proposed formulation in simulating the static
and dynamic inelastic response of RC buildings with and without EDDs are provided.

2 Finite deformation formulation for structural
elements

2.1 Beam model

The original geometrically exact formulation for beams due to Simo & Vu Quoc
(1986) is expanded here for considering an intermediate curved reference configu-
ration according to Ibrahimbegovic (1995). The geometry and the kinematics of the
beams are developed in the nonlinear differential manifold1

R
3 × SO(3). Let {Êi} and

{êi} be the spatially fixed material and spatial frames2, respectively. The straight refer-
ence beam is defined by the curve ϕ̂00 = SÊ1, with S ∈ [0, L] its arc–length coordinate.
Beam cross sections are described by means of the coordinates ξβ directed along {Êβ}
and the position vector of any material point is X̂ = SÊ1 +�β ξβ Êβ.

The curved reference beam is defined by means of the spatially fixed curve given
by ϕ̂0 =�iϕ̂0i(S)êi ∈ R

3. Additionally, each point on this curve has rigidly attached an
orthogonal local frame t̂0i(S) = Λ0Êi ∈ R

3, where Λ0 ∈ SO(3) is the orientation tensor.
The beam cross section A(S) is defined considering the local coordinate system ξβ but
directed along t̂0β. The planes of the cross sections are normal to the vector tangent
to the reference curve3, i.e. ϕ̂0,s = t̂01(S). The position vector of a material point on the
curved reference beam is x̂0 = ϕ̂0i +�β Λ0ξβ Ê0β. The motion deforms points on the
curved reference beam from ϕ̂0,S to ϕ̂S,t (at time t) adding a translational displacement
û(S) and the local orientation frame is simultaneously rotated together with the beam
cross section, from Λ0(S) to Λ(S, t) by means of the incremental rotation tensor as
Λ = ΛnΛ0 ≡�i t̂i ⊗ Êi ∈ SO(3) (see Figure 1).

1 The symbol SO(3) is used to denote the finite rotation manifold
2 The indices i and β range over and {1,2,3} and {2,3}, respectively.
3 The symbol (•)x is used to denote partial differentiation of (•) with respect to x.
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Figure 1 Configurational description of the beam.

In general, the normal vector t̂1 does not coincide with ϕ̂, S because of the shearing,
Simo (1985). The position vector of a material point on the current beam is

x̂(S, ξβ, t) = ϕ̂S,t +
∑
β

ξβ t̂β(S, t) = ϕ̂ +
∑
β

ΛξβÊβ (1)

Equation (1) implies that the current beam configuration is completely determined by
the pairs (ϕ̂, Λ) ∈ R

3 × SO(3). The deformation gradient is defined as the gradient of
the deformation mapping of Equation (1) and determines the strain measures at any
material point of the beam cross section Simo & Vu-Quoc (1986). The deformation
gradients of the curved reference beam and of the current beam referred to the straight
reference configuration are denoted by F0 and F, respectively. The deformation gradi-
ent Fn: = FF−1

0 is responsible for the development of strains and can be expressed as,
Kapania (2003) and Mata et al. (2007).

Fn = FF−1
0 = 1

|F0|

⎡
⎣ϕ̂,S − t̂1 + ω̃n

∑
β

ξβ t̂β

⎤
⎦⊗ t̂01 + Λn (2)

where |F0| is the determinant of F0 and ω̃n = Λn,SΛ
T
n is the curvature tensor relative to

the curved reference beam. In Equation (2) the term defined as γ̃n = ϕ̂,S − t̂1 corresponds
to the reduced strain measure of shearing and elongation, Kapania (2003) and Simo
(1985), with material description given by �̂= ΛT γ̃.The material representation of Fn

is obtained as Fm
n = ΛTFnΛ0.

Removing the rigid body component from Fn, it is possible to construct the strain
tensor εn = Fn − Λn, which conjugated to the asymmetric First Piola Kirchhoff (FPK)
stress tensor P = P̂i ⊗ t̂0i referred to the curved reference beam, Simo (1985). P̂i is the
FPK stress vector acting on the deformed face in the current beam corresponding to
the normal t̂0i in the curved reference configuration. The spatial strain vector acting
on the current beam cross section is obtained as ε̂n = εnt̂01.
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By other hand, the spatial form of the stress resultant n̂ and the stress couple m̂
vectors can be estimated from the stress vector P̂1 according to

n̂(S) =
∫

A
P̂1 dA; m̂(S) =

∫
A

(x̂ − ϕ̂)P̂1 dA; (3)

The material form of P̂j and εn are obtained by means of the pull-back operation as
ε̂n = ΛTεn, P̂m

j = ΛTP̂j, n̂n = ΛTn̂ and m̂n = ΛTm̂ respectively.
An objective measure of the strain rate vector sn acting on any material point on the

current beam cross section can be deduced following the results presented by Mata et al.

(2008a) and using the definition of the Lie derivative operator
∇

[ • ] given in Mata et al.
(2007b) as follows:

sn =
�

[ ˙̂εn] =
�

[˙̂γn] +
�

[ ˙̃ωn]
∑
β

ξβ t̂β = ϕ̂,S − υ̂nϕ̃,S + υ̂n,S

∑
β

ξβ t̂β (4)

where υ̃n = Λ̇nΛ
T
n is the current spin or angular velocity of the beam cross section with

respect to the curved reference beam. The material form of Equation (4) is Ŝn = ΛT
ŝn .

According to the developments given by Antman (1991), the classical form of the
equations of motion of the Cosserat beam for the static case are

n̂,S + n̂p = Aρ0
¨̂ϕ + α̃nŜρ0 + υ̃nυ̃nŜρ0︸ ︷︷ ︸

D1

(5a)

m̂,S + ϕ̂,S × n̂ + m̂p = Iρ0α̂n + υ̃nIρ0υ̂n + Ŝρ0 × ¨̂ϕ︸ ︷︷ ︸
D2

(5b)

where n̂p and m̂p are the external body force and body moment per unit of reference
length at time t, Aρ0, Ŝρ0 and Iρ0 are the cross sectional mass density, the first mass
moment density and the second mass moment density per unit of length of the curved
reference beam, respectively; their explicit expressions can be consulted in Kapania
(2003) and Simo & Vu-Quoc (1986). α̃n ≡ Λ̈nΛ

T
n − υ̃2

n is the angular acceleration of
the beam cross section and υ̂n and α̂n are the axial vectors of υ̃n and α̃n, respectively.
For most of the practical cases, the terms D1 and D2 can be neglected or added to the
external forces and moments.

Considering a kinematically admissible variation4 ĥ ≡ (δϕ̂, δθ̂) of the pair (ϕ̂, Λ), tak-
ing the dot product with Eqs. (5a) and (5b), integrating over the length of the curved
reference beam and integrating by parts, we obtain the nonlinear functional G(ϕ̂, Λ, h)
corresponding to the weak form of the balance equations, Ibrahimbegovic (1995) and

4 Supposing that Λ is parameterized in terms of the spatial rotation vector and following the results of
reference it is possible to show that δΛ = δθ̂× Λ with δθ̂ an admissible variation of the rotation vector.
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Simo & Vu-Quoc (1986), which is another way of writing the virtual work principle,

G(ϕ̂, Λ, h) =
∫

L
[(δϕ̂,S − δθ̂ × ϕ̂,S) · n̂ + δθ̂,S · m̂]dS

+
∫

L
[δϕ̂Aρ0

¨̂ϕ + δθ̂ · (Iρ0α̂n + υ̃nIρ0υ̂n)]dS

−
∫

L
[δϕ̂ · n̂p + δθ̂ · m̂p]dS − (δϕ̂ · n̂ + δθ̂ · m̂)|L0 = 0 (6)

The terms (δϕ̂,S − δθ̂× ϕ̂,S) and δθ̂,S appearing in Equation (6) correspond to the
co–rotated variations of the reduced strain measures γ̂n and ω̂n in spatial description.

2.2 Energy diss ipating devices

The finite deformation model for EDDs is obtained from the beam model releasing the
rotational degrees of freedom and supposing that all the mechanical behavior of the
device is described in terms of the evolution of a unique material point in the middle
of the resulting bar.

The current position of a point in the EDD bar is obtained from Equation (1) and
considering that ξβ = 0 as x̂(S, t) = ϕ̂(S, t). Supposing that the current orientation of the
EDD bar of initial length L∗ is given by the tensor Λ∗(t), (Λ∗

,S = 0, Λ̇∗ = 0), the spatial
position of the dissipative point in the EDD is obtained as ϕ̂(L∗/2, t) where L∗/2 is the
arch–length coordinate of the middle point in the bar element and the axial strain and
the axial strain rate in the dissipative point are obtained from Eqs. (2) and (4) as

Γ̂1(t) = {(Λ∗T ϕ̂,S) · Ê1}|(L∗/2,t) − 1 (7a)

˙̂
Γ1(t) = {(Λ∗T (ϕ̂,S − υ̃nϕ̂,S)) · Ê1}|(L∗/2,t) ≈ d

dt
Γ̂1(t)

∣∣∣∣
(L∗/2,t)

(7b)

Finally, the contribution of the EDD bar to the functional of Equation (6), written in
the material description, is given by

GEDD =
∫

L∗
nm

1 δΓ̂1 dS + {(Λ∗Tδϕ̂)T [M]d(Λ∗T ¨̂ϕ)}|(L∗/2,t) (8)

where it was assumed that Iρ0 ≈ 0, i.e. the contribution of the EDDs to the rotational
mass of the system is negligible and [M]d is the EDD’s translational inertia matrix,
i.e. the mass of the control system is supposed to be concentrated on the central point
of the bar. The term δΓ̂1 = (Λ∗T (ϕ̂,S − υ̃nϕ̂,S)) · Ê1 corresponds to the material form of
the variation of the axial strain in the EDD.

3 Constitutive models

In this work, material points on the cross sections are considered as formed by a
composite material corresponding to a homogeneous mixture of different simple com-
ponents, each of them with its own constitutive law (see Figure 2). The resulting
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Figure 2 Cross section showing the composite associated to a material point.

behavior is obtained by means of the mixing theory. Two kinds of nonlinear consti-
tutive models for simple materials are used: the damage and plasticity models. The
constitutive models are formulated in terms of the material form of the FPK stress and
strain vectors, P̂m

1 and ε̂n, respectively, Mata et al. (2007b and 2008a).

3.1 Degrading materials : damage model

The damage theory employed in this work is based on a special damage yielding
function which differentiates the mechanical response for tension or compression com-
ponents of the stress vector. The progress of the damage is based on the evolution of
a scalar damage parameter Oliver et al. (1990). Starting from an adequate form of
the free energy density and considering the fulfillment of the Clasius–Plank inequality
and applying the Coleman’s principle (see Mata et al. 2007b and 2008c) the following
constitutive relation in material form is obtained:

P̂m
1 = (1 − d)Cmeε̂n = Cmsε̂n = (1 − d)P̂m

01 (9)

where Cme and Cms = (1 − d)Cme is the secant constitutive tensor. Equation (9) shows
that the FPK stress vector is obtained from its elastic counterpart by multiplying it by
the factor (1 − d).

The damage yield criterion F , Hanganu et al. (2003) and Barbat et al. (1997), is
defined as a function of the undamaged elastic free energy density and written in terms
of the components of the material form of the undamaged principal stresses, P̂m

01, as

F = P − fc = [1 + r(n − 1)]

√√√√ 3∑
i=1

(Pm
ρ0i)

2 − fc ≤ 0 (10a)

where P is the equivalent stress, r and n are given in function of the tension and
compression strengths fc and ft and the parts of the free energy density developed
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when the tension, (Ψ0
t )L, or compression, (Ψ0

t )c, limits are reached; these quantities
are defined as

(Ψ0
t,c)L =

3∑
i=1

〈pm
p0i〉εni

2ρ0
, Ψ0

t = (Ψ0
t )L + (Ψ0

c )L (10b)

ft = (2ρΨ0
t E0)

1
2
L , fc = (2ρΨ0

c E0)
1
2
L , n = fc

ft
, r =

∑3
i=1〈Pm

p0i〉∑3
i=1 |Pm

p0i|
(10c)

A more general expression equivalent to that given in Equation (10a), Barbat et al.
(1997), is given by

F = G(P) − G(fc) (11)

The function G(P) has the following general expression Oliver et al. (1990):

G(χ) = 1 − G(χ)
χ

= 1 − χ∗

χ
eκ
(
1− χ∗

χ

)
(12)

where the term G(χ) gives the initial yield stress for certain value of the scalar parameter
χ=χ∗ and for χ→ ∞ the final strength is zero. The parameter κ of Equation (12)
is calibrated to obtain an amount of dissipated energy equal to the specific fracture
energy of the material g d

f = Gd
f /lc; where Gd

f is the tensile fracture energy and lc is the
characteristic length of the fractured domain.

The evolution law for the internal damage variable d is given by

ḋ = µ̇
∂F
∂P = µ̇

∂G
∂P (13)

where µ̇ = Ṗ ≥ 0 is the damage consistency parameter Mata et al. (2007b). Finally, the
Kuhn-Tucker relations: (a) µ̇≥ 0, (b) F ≤ 0, (c) µ̇F = 0, have to be employed to derive
the unloading–reloading conditions i.e. if F <0 the condition (c) imposes µ̇= 0; on
the contrary, if µ̇>0 then F = 0.

3.1.1 Viscos i t y

The rate dependent behavior is considered by using the Maxwell model. The FPK stress
vector P̂mt

1 is obtained as the sum of a rate independent part P̂m
1 , Equation (9), and a

viscous component P̂mv
1 as

P̂mt
1 = P̂m

1 + P̂mv
1 = Cmvε̂n + ηsmŜn = (1 − d)Cme

(
ε̂n + η

E0
Ŝn

)
(14)

where ηsm = η/E0Cms is the secant viscous constitutive tensor, Cmv = (1 − d)Cme, and
the parameter η is the viscosity. For the case of a completely damaged material (d = 1),
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the corresponding stresses are zero. The linearized increment of the FPK stress vector
(material and co-rotated forms) are calculated as

�P̂mt
1 = Cmv �ε̂n + ηsm�Ŝn, �[

�
P̂t

1 ] = Csv �[
�
ε̂n ] + ηss�[

�
ŝn ] (15)

where Csv = ΛCmvΛT and Csv = ΛηssΛT . The explicit form of the terms �Ŝn and [Ŝn]
can be consulted in reference Mata et al. (2008a). Finally, the material description of
the tangent constitutive tensor Cmv considering the viscous effect is given by Barbat
et al. (1997)

Cmv = (I − Dme)Cme = I −
[

I + dG
dPm

(P̂m
01 + P̂mv0

1 ) ⊗ ∂Pm

∂P̂m
01

]
(16)

3.2 Plast ic materials

In the case of materials which can undergo non-reversible deformations the plasticity
model formulated in the material configuration is used for predicting their mechanical
response. Assuming small elastic, finite plastic deformations, an adequate form of the
free energy density and analogous procedures as those for the damage model we have

P̂m
1 = ρ0

∂Ψ (ε̂e
n, kp)
∂ε̂e

n
= Cms(ε̂n − ε̂P

n) = Cmeε̂e
n (17)

where the ε̂e
n is the elastic strain calculated subtracting the plastic strain ε̂P

n from the
total strain ε̂n and ρ0 is the density in the material configuration.

Both, the yield function, Fp, and plastic potential function, Gp are formulated in
terms of the FPK stress vector P̂m

1 and the plastic damage internal variable kp as

Fp(P̂m
1 , kp) = Pp(P̂m

1 ) − fp(P̂m
1 , kp) = 0, Gp(P̂m

1 , kp) = K (18)

where Fp(P̂m
1 , kp) is the equivalent stress, which is compared with the hardening func-

tion fp(P̂m
1 , kp) and K is a constant value, Oller et al. (1996a). In this work, kp

constitutes a measure of the energy dissipated during the plastic process and, therefore,
it is well suited for materials with softening and is defined by Oller et al. (1996b) as

gP
f = GP

f

lc
=
∫ ∞

t=0
P̂m

1 · ε̇P
n dt, 0 ≤

[
kp = 1

g P
f

∫ t

t=0
P̂m

1 · ε̇P
n dt

]
≤ 1 (19)

where GP
f is the specific plastic fracture energy of the material in tension and lc is the

length of the fractured domain defined in analogous manner as for the damage model.
The integral term in Equation (19) corresponds to the energy dissipated by means of
plastic work.

The flow rules for the internal variables ε̂P
n and kp are defined as

˙̂εP
n = λ̇

∂Gp

∂P̂m
1

, kp = λ̇%̂(P̂m
1 , kp, GP

f ) · ∂Gp

∂P̂m
1

= %̂(P̂m
1 , kp, GP

f ) · ˙̂εP
n (20)
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where λ̇ is the plastic consistency parameter and %̂ is the hardening vector, Oller et al.
(1996a). Regarding the hardening function of Equation (18), the following evolution
equation has been proposed:

fp(P̂m
1 , kp) = rσt(kp) + (1 − r)σc(kp) (21)

where r has been defined in Equation (10c) and the scalar functions σt(kp) and σc(kp)
describe the evolution of the yielding threshold in uniaxial tension and compression
tests, respectively.

As it is a standard practice in plasticity, the loading/unloading conditions are derived
in the standard form from the Kuhn-Tucker relations formulated for problems with
unilateral restrictions, i.e. (a) λ̇≥ 0, (b) Fp ≤ 0 and (c) λ̇Fp = 0. Starting from the plastic
consistency condition Ḟp = 0 and considering the flow rules it is possible to deduce the
explicit form of λ̇, as Oller et al. (1996a)

λ̇ = −

∂Fp

∂P̂m
1

· (Cme ˙̂εn)

{
∂Fp

∂P̂m
1

(
Cme ∂Gp

∂P̂m
1

)
− ∂fp

∂kp
%̂ · ∂Gp

∂P̂m
1

} (22)

The material form of the tangent constitutive tensor is calculated taking the time
derivative of Equation (17), considering the flow rule of Equation (20) and the plastic
consistency parameter of Equation (22) as Oller et al. (1996b)

δP̂m
1 =

⎡
⎢⎢⎢⎢⎣

(
Cme ∂Gp

∂P̂m
1

)
⊗
(

Cme ∂Fp

∂P̂m
1

)

∂Fp

∂P̂m
1

·
(

Cme ∂Gp

∂P̂m
1

)
− ∂Fp

∂kp
%̂ ·
(
∂Gp

∂P̂m
1

)

⎤
⎥⎥⎥⎥⎦ δε̂n = Cmtδε̂n (23)

3.3 Mixing theory for composites

Each material point on the beam cross section is treated as a composite material
according to the mixing theory, Oller et al. (1996a). The interaction between all
the components defines the overall mechanical behavior of the composite at mate-
rial point level. Supposing N different components coexisting in a generic material
point subjected to the same material strain ε̂n, we have the following closing equation:
ε̂n ≡ (ε̂n)1 = · · · = (ε̂n)q = · · · = (ε̂n)N , which imposes the strain compatibility between
components. The free energy density of the composite, �, is obtained as the weighted
sum of the free energy densities of the N components. The weighting factors corre-
spond to the quotient between the volume of the qth component, Vq and the total
volume, V, such that �q kq = 1.

The material form of the FPK stress vector P̂m
1 for the composite, including the

participation of rate dependent effects, is obtained in analogous way as for simple
materials i.e.

P̂mt
1 =

∑
q

kq(P̂m
1 + P̂mv

1 )q =
∑

q

kq

[
(1 − d)Cme

(
ε̂n + η

E0
Ŝn

)]
q

(24)
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where (P̂m
1 )q and (P̂mv

1 )q correspond the strain and rate dependent stresses of each one
of the N components. The material form of the secant and tangent constitutive tensors
for the composite, C ms

and C mt
, are obtained as, Oller et al. (1996a)

Cms =
N∑

q=1

kq(Cms)q, Cmt =
N∑

q=1

kq(Cmt)q δε̂n (25)

where (Cms)q and (Cmt)q are the material form of the secant and tangent constitutive
tensors of the qth component.

3.4 Constitutive relations for EDDs

The constitutive law proposed for EDDs is based on a previous work of Mata et al.
(2007a) which provides a versatile strain–stress relationship with the following general
form:

P
m

(ε1, ε̇1, t) = P
m
1 (ε1, t) = P

m
2 (ε̇1, t) (26)

where P
m

is the average stress in the EDD, ε1 the strain level, t the time, ε̇1 the
strain rate, P

m
1 and P

m
2 are the strain dependent and rate dependent parts of the stress,

respectively. The model uncouples the total stress in viscous and non-viscous compo-
nents, which correspond to a viscous dashpot device acting in parallel with a nonlinear
hysteretic spring. The purely viscous component does not requires to be a linear func-
tion of the strain rate. Additionally, hardening, and variable elastic modulus can be
reproduced. The response of the nonlinear hysteretic spring is obtained solving sys-
tem of nonlinear differential equations depending on a set of parameters calibrated
from experimental data. Details about the determination of the parameters and the
integration algorithm can be reviewed in Mata et al. (2007a).

4 Numerical implementation

In order to obtain a Newton type numerical solution, the linearized form of the weak
form of Equation (6) is required, which can be written as

L[G(ϕ̂∗, Λ∗, ĥ)] = G(ϕ̂∗, Λ∗, ĥ) = DG(ϕ̂∗, Λ∗, ĥ) · p̂ (27)

where L[G(ϕ̂∗, Λ∗, ĥ)] is the linear part of the functional G(ϕ̂, Λ, ĥ) at the configuration
defined by (ϕ̂, Λ) = (ϕ̂∗, Λ∗) and p̂ ≡ (�ϕ̂,�θ̂) is an admissible variation. The term
G(ϕ̂∗, Λ∗, ĥ) supplies the unbalanced force and it is composed by the contributions of
the inertial, external and internal terms; the differential DG(ϕ̂∗, Λ∗, ĥ) · p̂, gives the
tangential stiffness, Simo & Vu-Quoc (1986).

The linearization of the inertial and external components, DGint · p̂ and DGext · p̂
gives the inertial and load dependent parts of the tangential stiffness, K1∗ and KP∗,
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respectively, and they can be consulted in Simo & Vu-Quoc (1986). The linearization
of the internal term is calculated as, Mata et al. (2007b and 2008a)

DGint(ϕ̂∗, Λ∗, ĥ) · p̂ =
∫ L

0

⎛
⎜⎜⎜⎜⎝ĥT

[
0 0

−ñ∗
[

d
dS

]
0

]

︸ ︷︷ ︸
[ns∗]

p̂ + ĥT [B∗]T
[
�n̂∗
�m̂∗

]
⎞
⎟⎟⎟⎟⎠dS (28)

where the skew–symmetric tensor ñ∗ is obtained from n̂∗, [d/dS]v̂ = [I]v̂,S ∀ v̂ ∈ R
3, the

operator [nS∗] contributes to the geometric part of the tangent stiffness and the operator
[B∗] relates the admissible variation h and the co-rotated variation of the strain vectors.
The explicit expression for [B∗] can be found in Kapania (2003) and Simo & Vu-Quoc
(1986).

The estimation of the linearized form of the sectional force and moment vectors
appearing in Equation (28) requires taking into account the linearized relation existing
between P̂m

1 , obtained using the mixing rule, and ε̂n. After integrating over the beam
cross section, the following result is obtained for the linearized relation between cross
sectional forces and the reduced strain measures Mata et al. (2007b and 2008a)

{
�n̂
�m̂

}
=
[

CSV
11 CSV

12

CSV
21 CSV

22

]

︸ ︷︷ ︸
[CSV ]

⎧⎨
⎩
�[

�
γ̂n ]

�[
�
ω̂n ]

⎫⎬
⎭+

[
ϒSS

11 ϒSS
12

ϒSS
21 ϒSS

22

]

︸ ︷︷ ︸
[ϒSS]

⎧⎪⎨
⎪⎩
�[

�˙̂γn ]

�[
�˙̂ωn ]

⎫⎪⎬
⎪⎭−

[
o ñ
o m̃

]
︸ ︷︷ ︸

[F̃]

{
�ϕ̂

�θ̂

}
(29)

where m̃ is the skew-symmetric tensor obtained from m̂, CSV
ij and ϒSS

ij , (i, j = 1, 2) are
the spatial forms of the reduced tangential and viscous tangential constitutive tensors,
which are rate dependent and can be consulted in Mata et al. (2008a). Finally, Equation
(29) allows to rewrite Equation (28) as

DGint · p̂ =
∫ L

0
ĥT [B∗]T [Cst

∗ ][B∗]p̂ dS
︸ ︷︷ ︸

KG∗

+
∫ L

0
ĥT [B∗]T [ϒst

∗ ][v∗]p̂ dS
︸ ︷︷ ︸

KM∗

+
∫ L

0
ĥT ([̃nS∗] − [B∗]T [̃F∗])p̂ dS

︸ ︷︷ ︸
KV∗

(30)

where KG∗, KM∗ and Kv∗, evaluated at the configuration (ϕ̂∗, Λ∗), give the geometric,
material and viscous parts of the tangent stiffness, which allows to rewrite Equation
(27) as

L[G∗] = G∗ + K1∗ + KM∗ + KV∗ + KG∗ + KP∗ (31)

The solution of the discrete form of Equation (30) by using the FE method follows
identical procedures as those described by Simo & Vu-Quoc (1986) for an iterative
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Newton-Rapson integration scheme and it will not be included here. Newmark’s
implicit time stepping algorithm has been chosen as integration method following
the development originally proposed by Simo & Vu-Quoc (1986). For the rotation
part the time-stepping procedure takes place in SO(3) and the basic steps, as well as
the iterative update algorithm for the strain and strain rate vectors are given in Mata
et al. (2007b and 2008a).

4.1 Cross sectional analysis

The cross section analysis is carried out expanding each integration point on the beam
axis in a set of integration points located on each fiber on the cross section. The
cross section is meshed into a grid of quadrilaterals, each of them corresponding to a
fiber oriented along the beam axis. The geometry of each quadrilateral is described by
means of normalized bi-dimensional shape functions and several integration points can
be specified according to a selected integration rule. The average value of a quantity,
[•], for example, the components of FPK stress vector or the tangential tensor existing
on a quadrilateral, are

[•] = 1
Ac

∫
Ac

[•]dAc = 1
Ac

Np∑
p=1

Nq∑
q=1

[•](yp, zp)JpqWpq (32)

where Ac is the area of the quadrilateral, Np and Nq are the number of integration
points in the two directions of the normalized geometry, [•](yp, zq) is the value of the
quantity [•] existing on a integration point with coordinates (yp, zq) with respect to
the reference beam axis, Jpq is the Jacobian of the transformation between normalized
coordinates and cross sectional coordinates and Wpq are the weighting factors. Two
additional integration loops are required. The first one runs over the quadrilaterals
and the second loop runs over each simple material associated to the composite of the
quadrilateral. More details can be consulted in Mata et al. (2007).

5 Damage indices

A measure of the damage level of a material point can be obtained as the ratio of the
existing stress level to its elastic counterpart. Following this idea, it is possible to define
the fictitious damage variable

̂

D as, Barbat et al. (1997)

3∑
i=1

|Pm
1i| = (1 −

̂

D)
3∑

i=1

|Pm
1i0| →

̂

D = 1 −
∑3

i=1 |Pm
1i|∑3

i=1 |Pm
1i0| (33)

where |Pm
1i| and |Pm

1i0| are the absolute values of the components of the existing and
elastic stress vectors, respectively. Initially, the material remains elastic and

̂

D = 0,
but when all the energy of the material has been dissipated |Pm

1i| → 0 and

̂

D → 1.
Equation (33) can be extended to consider elements or even the whole structure by
means of integrating over a finite volume as follows:

̂

D = 1 −
∫

Vp
(�i|Pm

1i|)dVp∫
Vp

(�i|Pm
1i0|)dVp

(34)
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where Vp is the volume of the part of the structure. Equation (34) is easily implemented
in a standard FEM code without requiring large extra memory storage.

6 Numerical examples

6.1 Experimental–numerical comparative study of a scaled
RC building model

The first example corresponds to the comparison between the numerical simulation
obtained by means of the proposed formulation and the experimental data obtained
by Lu (2002) for the seismic analysis of a scaled model (1:5.5) of a benchmark regular
bare frame (BFR). The structure was designed for a ductility class medium in accor-
dance with the Eurocode 8 (2001) with a peak ground acceleration of 0,3 g and a soil
profile A. Details about loads, geometry, material properties and distribution of steel
reinforcements can be consulted in the same publication. In the experimental program,
the structure was subjected to several scaled versions of the N–S component of the El
Centro 1940 earthquake record. Four quadratic elements with two Gauss integration
points were used for each beam and column. Cross sections were meshed into a grid
of 20 equally spaced layers. Longitudinal steel reinforcements were included in the
external layers as part of a composite material. The fracture energy of the damage
model used for concrete was modified to take into account the confining effect of
transversal stirrups, Mata et al. (2007b). A tension to compression ratio of 10 was
used for concrete and 1 for steel. In the numerical simulations, the model is subjected
to a push–over analysis. Static forces derived from the inertial contribution of the
masses are applied at the floor levels considering an inverted triangular distribution.
A relationship between the measured base shear and the top lateral displacement is
given by Lu (2002) for each seismic record. This curve is compared in Figure 3 with
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Figure 3 Capacity curves:Comparison between results from numerical pushover and experimen-
tal tests.
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the capacity curve obtained by using the numerical push–over analysis. It is possible to
see that the push– over analysis gives a good approximation for the global maximum
response and, therefore, it constitutes a suitable numerical procedure for estimating
the expected nonlinear properties of structures subjected lo seismic actions. In the same
figure, it is possible to appreciate that in both, the numerical simulation and the exper-
imental cases, the characteristic values of the structure; that is, global ductility level,
elastic limit and overstrength, are similar. Figure 4 shows a comparison between the
distribution of cross sectional damage predicted numerically and the map of fissures
obtained after the application of several shaking table tests.

In this case, the proposed damage index along with the geometric and constitutive
formulation used for beams is able to reproduce the general failure mechanism of the
structure where dissipation is mainly concentrated in the beam elements.

6.2 Seismic response of a precast RC building with EDDs

The nonlinear seismic response of a typical precast RC industrial building shown in
Figure 5 is studied. The building has a bay width of 24 m and 12 m of inter–axes
length. The story height is 10 m. The concrete of the structure is H-35, (35 MPa,
ultimate compression), with an elastic modulus of 29.000 MPa. It has been assumed
a Poisson coefficient of 0.2. The ultimate tensile stress for the steel is 510 MPa. This
figure also shows some details of the steel reinforcement of the cross sections. The
dimensions of the columns are 60 × 60 cm2. The beam has an initial high of 60 cm on
the supports and 160 cm in the middle of the span. The permanent loads considered
are 1050 N/m2 and the weight of upper half of the closing walls with 432,000 N. The
input acceleration is the same as in example 6.1.

The half part of the building is meshed using 4 quadratic elements with two Gauss
integration points for the resulting beam and column. The cross sectional grid of fibers
is shown in Figure 6. One integration point is used for each quadrilateral.

(a) (b)
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Figure 4 Damage. (a) Experimental:Map of fissures. (b) Numerical:Cross sectional damage index.
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Figure 6 Half part of 2D precast industrial frame. 1: Normal frame 2: Energy dissipating devices
incorporated (diagonal elements). 3: Numerical model of column and beam cross
sections.

The EED was simulated by means of employing the previously described model
reproducing a plastic dissipative mechanism. The properties of the device were designed
for yielding with an axial force of 150.000 N and for a relative displacement between
the two ending nodes of 1.5 mm. The length of the devices was of 2.0 m. The results
of the numerical simulations allow seeing that the employment of plastic EDDs con-
tributes to improve the seismic behavior of the structure for the case of the employed
acceleration record. Figure 7a shows the hysteretic cycles obtained from the lateral
displacement of the upper beam–column joint and the horizontal reaction (base shear)
in the columns for the structure with and without devices. It is possible to appreciate
that the non-controlled structure (bare frame) presents greater lateral displacements
and more structural damage, (greater hysteretic area than for the controlled case). Fig-
ure 7b shows the hysteretic cycles obtained in the EDD, evidencing that part of the
dissipated energy is concentrated in the controlling devices, as expected.
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Figure 8 shows the time history response of the horizontal displacement of the upper
beam–column joint. A reduction of approximately 40% is obtained for the maximum
lateral displacement when compared with the bare frame. Acceleration and velocity
are controlled in the same way, but only 10 and 5% of reduction is obtained. A possible
explanation for the limited effectiveness of the EDD is that the devices only contribute
to increase the ductility of the beam–column joint without alleviating the base shear
demand on the columns due to the dimensions of the device and its location in the
structure. By other hand, joints are critical points in precast structures and therefore,
the employment of EDDs combined with a careful design of the columns can help to
improve their seismic behavior.

7 Conclusions

In this work, a geometrically exact formulation for initially curved beams has been
extended to consider arbitrary distributions of composite materials on the cross
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sections in the seismic case. The consistent linearization of the weak form of the
momentum balance equations considers the constitutive nonlinearity with rate depen-
dent effects. The resulting model is implemented in a displacement based FEM code.
An iterative Newton-Rapson scheme is used for the solution of the discrete version of
the linearized problem. A specific element for EDD is developed, based on the beam
model but releasing the rotational degrees of freedom.

Each material point of the cross section is assumed to be composed of several simple
materials with their own constitutive laws. The mixing rule is used to describe the
resulting composite. Viscosity is included at constitutive level by means of a Maxwell
model. Beam cross sections are meshed into a grid of quadrilaterals corresponding to
fibers directed along the beam axis. Two additional integration loops are required at
cross sectional level in each integration point to obtain the reduced quantities. Local
and global damage indices have been developed based on the ratio between the visco-
elastic and the nonlinear stresses.

The present formulation is validated by means of two numerical examples, which
include the comparison with existing experimental data and the study of the seismic
response of a precast reinforced concrete structure with EDDs.
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