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The codes used in seismic design of waffled-slab floors

buildings (WSFB), such as the Spanish NCSE-02

earthquake-resistant design code, assign them restricted

ductility, utilise linear structural analysis based on modal

analysis, but also consider the structural ductility

concept. Uncertainties arise whenever these codes are

applied to the special case of buildings with waffled-slab

floors, the ductility of which is doubtful. In many cases,

during earthquakes, buildings with restricted ductility

are unable to reach the ductility values assumed in the

design process, although they may exhibit adequate

values of overstrength. This paper therefore studies

typical WSFB by applying static incremental non-linear

analysis procedures (pushover analysis) in order to

calculate their actual structural ductility and

overstrength values. Fragility curves corresponding to

different damage states and damage probability matrices

are also calculated and compared with those of moment-

resisting frame buildings (MRFB) in order to obtain

useful conclusions for earthquake resistant design. One

of the most relevant conclusions of this article is that the

use of a better confinement and of ductile steel can only

improve the seismic behaviour of MRFB but not that of

WSFB.

1. INTRODUCTION

Studies performed recently in areas of Spain with low-to-

moderate seismic hazard1 reveal that seismic vulnerability is

high in such areas and, consequently, that their seismic risk is

significant. This is mainly owing to the typology of the

existing buildings, most of them with unreinforced masonry

structures, designed and built without the consideration of any

earthquake-resistant criteria.2,3 Moreover, most of the existing

reinforced concrete (RC) buildings are not moment-resisting

frames, but structures with waffled-slab floors.4 It therefore

appears to be useful to perform more detailed studies of this

typology of buildings in order to establish if it is reasonable to

recommend their use in seismic areas.

The emergence of performance-based procedures for the design

and retrofit of earthquake-resistant buildings5–7 has sparked

research on the non-linear static response of buildings.8

Among the most studied structural typologies is that of the

moment-resisting frame buildings (MRFB).9,10 However, the

non-linear response of restricted ductility buildings, that is,

buildings expressly designed to have low ductility, including

columns-and-slabs RC buildings, has not been studied at

large.11,12 These last classes of buildings are frequent in Spain

and in other European countries (e.g. Turkey) or Latin America

(e.g. Ecuador, Dominican Republic and Mexico), where their

waffled-slab floor version is used. It is worth mentioning that

the Uniform Building Code (UBC)-9713 and International

Building Code (IBC)-200314 codes, as well as the Eurocode 8,15

do not make any reference to waffled-slab floors as possible

structural elements to be used in the earthquake-resistant

design of buildings.

Adequacy of the response of a structure to a given seismic

threat can be evaluated, in a simplified way, through

examination of two important non-linear response

characteristics

(a) the maximum ductility value reached by such buildings

during a strong ground motion

(b) the reduction factor applied to design spectrum ordinates

in order to calculate the seismic design forces, this factor

being closely related to the overstrength.

According to the Norma de Construction Sismorresistente

(NCSE)-02 Spanish earthquake-resistant design code,16

waffled-slab floors buildings (WSFB) have restricted ductility

values of two. This value is set based on the well-known

premise that this structural typology has low capacity for

energy dissipation. At the same time, apart from the UBC-97

and

IBC-2003, the Eurocode 8 and NCSE-02 Spanish code do not

refer directly to overstrength values, which are very important

for determining the response reduction factors.17,18

With these observations as a starting point, the main objective

of this paper is to study the typical WSFB seismic behaviour by

calculating their actual structural ductility and overstrength

values, using an incremental non-linear static analysis

procedure (pushover analysis). In this simplified analysis,

lateral forces corresponding to the first vibration mode shape

are gradually applied and global structural damage indexes are

used to determine the ultimate drift values of the buildings.

Drift values corresponding to the yielding point are obtained

by using the idealised bilinear form of the capacity curve

proposed by Park.19 The benefits of the ductility of the steel

reinforcements and of the longitudinal and transversal
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confinements are also evaluated using the building pushover

response.

With the objective of elucidating how structural typology and

design have an influence on the global response of building

structures, three buildings with different characteristics were

designed and analysed. The first building has waffled-slab

floors and has been designed with a reduction factor of two.

The second building, has moment-resisting RC frames, it is

designed according to the Instruccion de Hormigon Estructura

(EHE)20 and NCSE-02 Spanish codes, and has a ductility of

four. Finally, the third building is also designed using moment-

resisting RC frames, but according to the American Concrete

Institute (ACI)21 specifications in order to fulfil ductility

requirements of eight. The capacity curve of the WSFB is

compared with those of the two MRFB. Fragility curves and

damage probability matrices are also obtained in order to

compare the probability the WSFB and MRFB exceed different

predefined damage states. Preliminary conclusions on the

suitability of using WSFB in seismic areas are finally given.

2. DESCRIPTION OF THE BUILDINGS STUDIED

2.1. Building with waffled-slab floors

The WSFB slabs have ribs oriented in two orthogonal

directions and a solid thin RC layer in the upper face. The

configuration of the ribs generates square spaces on the lower

face of the slab, often formed by the use of metal or fibreglass

pans or filled with hollow lightweight blocks (see Figure 1).

Slabs bear directly on columns; in order to avoid stress

concentration, they have a solid RC element of transition,

called solid head, between the ribs and columns (see Figures

2(a) and 2(b)). Solid heads are reinforced in two directions, but

also have additional reinforcement aiming to avoid the

punching failure at the proximity of the joints.

The WSFB under study has three stories: the first one is 4.5 m

high, whereas the other two are 3.0 m high; this is a typical

configuration for a building whose ground floor is intended for

commercial use. Slab thickness is 30 cm. A typical plan of this

building is shown in Figure 3. Reinforcement details of this

building are provided in the Appendix.

2.2. RC moment-resisting frame buildings

Two RC buildings were designed with the objective of studying

the MRFB response: one according to the EHE and NCSE-02

Spanish codes; the second one according to ACI-318 and IBC-

2003 codes. Buildings have one-way ribbed slabs and seismic

design criteria are added to increase the cross-section size of

the columns, thereby yielding a structure with strong columns

and weak beams. Further information about the geometry and

reinforcement details of buildings can be seen in the Appendix.

The characteristics of the materials of the three buildings are

(a) compressive concrete cylinder strength: 25 N/mm2 (EHE)

and 28 N/mm2 (ACI-318)

(b) axial and shear yield strength of steel: 500 N/mm2 (EHE)

and 525 N/mm2 (ACI-318).

2.3. Seismic design of the buildings

Seismic design of the buildings was performed using the

inelastic spectrum prescribed by the NCSE-02 Spanish code for

stiff soils and basic acceleration of 0.23 g (see Figure 4).
Figure 1. View of a waffled-slab floor in construction process

(b)

(a)

Figure 2. (a) Typical waffled-slab floor RC building
constructed in Spain; (b) WFSB structural components
(viewed from below)
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Seismic actions were

calculated from the three-

dimensional (3D) modal

analysis, in which three

degrees of freedom for level

were considered. Table 1

shows modal periods for the

three buildings studied.

3. PUSHOVER

ANALYSIS

Buildings designed according

to the linear elastic methods

outlined in the seismic design

codes have been studied

using a push-over analysis. A

single equivalent frame was

modelled for each building.

For the WSFB the equivalent

frame is defined following

the recommendations

outlined in the ACI-318 code,

with three main assumptions.

(a) An equivalent frame is a

two-dimensional (2D)

frame defined by cutting

3D building along lines midway between columns. For

lateral load analyses, the frame must include all floors.

(b) Only 75% of the factored live load is recommended.

(c) Critical zones are defined between the centrelines of the

columns and the face of the solid heads. The critical zone is

considered as the thickened section of the floor slab, and

its equivalent moment of inertia Ieq is obtained by

Ieq ¼
I

1� (c2=l2)
1

where I is the solid head moment of inertia, c2 is the column

width in the transverse direction and l2 is that of the solid

head; this procedure takes into account the shear failure in the

critical zone. The equivalent slab moment of inertia can be

calculated from its gross section, obtaining an equivalent depth

of 19.45 cm. Details of the equivalent frame are shown in

Figure 5.

Non-linear static analysis with force control was performed

using PLCd22 finite element code.23,24 PLCd is a finite element

code that works with 2D and 3D solid geometries as well as

with prismatic, reduced to one-dimensional (1D) members. This

code provides a solution combining both numerical precision

and reasonable computational costs.25,26 It can deal with

kinematics and material non-linearities. It uses various 3D

constitutive laws to predict the material behaviour (elastic,

visco-elastic, damage, damage-plasticity, etc.27) with different

yield surfaces to control their evolution (Von-Mises,

Mohr–Coulomb, improved Mohr–Coulomb, Drucker–Prager,

etc.28). Newmark’s method29 is used to perform the dynamic

analysis. A more detailed description of the code can be found

in Mata et al.25,26 The main numerical features included in the

code to deal with composite materials are
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Figure 3. Plan view of the WSFB (dimensions in cm)
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Figure 4. Elastic and inelastic spectrum used to perform
dynamic analyses

Period: s

Mode WSFB MRFB
(EHE/NCSE-02)

MRFB
(ACI-318/IBC-2003)

1 0.93 0.45 0.41
2 0.91 0.44 0.38
3 0.82 0.39 0.37
4 0.27 0.16 0.30
5 0.26 0.16 0.29
6 0.23 0.14 0.23
7 0.12 0.09 0.22
8 0.11 0.09 0.20
9 0.10 0.08 0.17

Table 1. Periods of the modes considered in buildings analyses
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(a) classical and serial/parallel mixing theory used to describe

the behaviour of composite components30

(b) anisotropy mapped space theory enables the code to

consider materials with a high level of anisotropy, without

the associated numerical problems24,31

(c) Fibre–matrix debonding which reduces the composite

strength due to the failure of the reinforced–matrix

interface.32

Experimental evidence shows that inelasticity in beam

elements can be formulated in terms of cross-sectional

quantities33 and, therefore, the beam’s behaviour can be

described by means of concentrated models, sometimes called

plastic hinge models, which localise all the inelastic behaviour

at the ends of the beam by means of ad hoc force–

displacement or moment–curvature relationships.34 In the

formulation used in this computer program, however, the

procedure consists of obtaining the constitutive relationship at

cross-sectional level by integrating on a selected number of

points corresponding to fibres directed along the beam’s axis.35

So, the general non-linear constitutive behaviour is included in

the geometrically exact non-linear kinematics formulation for

beams proposed by Simo,25 considering an intermediate curved

reference configuration between the straight reference beam

and the current configuration. The displacement-based method

is used for solving the resulting non-linear problem. Plane

cross-sections remain plane after the deformation of the

structure; therefore, no cross-sectional warping is considered,

avoiding including additional warping variables in the

formulation or iterative procedures to obtain corrected cross-

sectional strain fields. An appropriated cross-sectional analysis

is applied for obtaining the cross-sectional forces and

moments25 and the consistent tangential tensors in the

linearised problem. Thermodynamically consistent constitutive

laws are used in describing the material behaviour for these

beam elements, which allows obtaining a more rational

estimation of the energy dissipated by the structures. The

simple mixing rule for composition of the materials is also

considered in modelling materials for these elements, which are

composed by several simple components. Special attention is

paid to obtain the structural damage index capable of

describing the load-carrying capacity of the structure.

According to the mixing theory, in a structural element coexist

N different components, all of them subject to the same strain;

therefore, strain compatibility is forced among the material

components. Free energy density and dissipation of the

composite are obtained as the weighted sum of the free energy

densities and dissipation of the components, respectively.

Weighting factors kq are the participation volumetric fraction

of each compounding substance, kq ¼ Vq=V , which are

obtained as the quotient between the qth component volume,

Vq, and the total volume, V.23–26

Discretisation of frames was performed with finite elements

whose lengths vary depending on the column and beam zones

with special confinement requirements, as can be seen in

Figure 6. These confinement zones were designed according to
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Figure 5. Details of equivalent frame used in the analysis of
the WSFB
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Figure 6. Typical discretisation of the frames (dimensions in cm)
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the general dimensions of the structural elements, the

diameters of the longitudinal steel, the clear of spans and the

storey heights. Frame elements are discretised into equal

thickness layers with different composite materials,

characterised by their longitudinal and transversal

reinforcement ratio (see Figure 7). Transversal reinforcement

benefits are included by means of the procedure proposed by

Mander et al.36

The pushover analysis has been performed by applying a set of

lateral forces corresponding to the seismic actions in the first

vibration mode shape. Lateral forces are gradually increased

starting from zero, passing through the value inducing

transition from elastic to plastic behaviours and, finally

reaching the value which corresponds to the ultimate drift (i.e.

the point at which the structure can no longer support any

additional load and collapses). Before the structure is subjected

to the lateral loads simulating the seismic action, it is first

loaded with the gravity loads.

The non-linear static response obtained by way of finite

element techniques is used to generate the idealised elasto-

plastic behaviour shown in Figure 8, which has a secant

segment from its origin to a point (˜ y, V y), V y being the 75%

of maximum base shear.19 The second segment, representing

the branch of plastic behaviour, is obtained by finding the

intersection of the aforementioned segment with the horizontal

corresponding to the maximum base shear. The use of the area

compensation procedure guarantees that the energies dissipated

by the ideal and the modelled systems are equal, leading to

determine ˜y and ˜u (see Figure 8) and, consequently, it is

possible to obtain the ductility value. In Figure 8, Vd is the

design base shear.

The variables which characterise in a simplified way the

quality of the building seismic behaviour are the structural

ductility, �, defined as

� ¼ ˜u

˜y
2

where ˜u is the ultimate drift obtained from the idealised

capacity curve, and the overstrength RRof the building, defined

as

RR ¼ Vy

Vd
3

where Vd is the design base shear and Vy is the yielding base

shear (see Figure 8). The design base shear has been calculated

using the procedure prescribed in most of the main seismic

codes, applying the criteria of the square root of the sum of

squares (SRSS) of the values of the forces obtained from modal

analysis. Next, the design base shear is normalised respecting

the total seismic weight of the structure. Overstrength RR is

similar to a safety factor applied in the design.

4. WSFB NON-LINEAR RESPONSE

The WSFB is designed according to the NCSE-02 and EHE

Spanish codes for a structural ductility equal to two. Its

capacity curve is calculated using a mechanical model similar

to the equivalent frame defined in the ACI-318 code and it is

shown in Figure 9(a). Analysis is performed by means of the

finite element method and using damage and plasticity

constitutive models, as well as the mixing theory.22–25,27,37 To

control the energy dissipation and ensure the correct behaviour

of the structure, appropriate mean values of strength and

facture energy were used for each compounding material (i.e.

steel and concrete).

Structural ductility for the exterior frame is obtained from the

yielding drift value ˜y, and the ultimate drift ˜u, which can be

seen in the idealised capacity curve of Figure 9(a)

Concrete Steel
reinforcement

Mechanical
model

Composite 6

Composite 5

Composite 4

Composite 3

Composite 2

Composite 1

Ordinary
confined zone

Specially
confined zone

Figure 7. Scheme of frame elements
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� ¼ ˜u

˜y
¼ 2:91

1:85
¼ 1:57

The value obtained is very low, even when compared with

design value � ¼ 2 foreseen in the NCSE-02 Spanish code for

this structural type. The overstrength is: RR ¼ Vy

Vd
¼ 1:92.

Ductility values calculated for this structural class are similar

to those obtained for flat slab buildings12 and suggest that the

ductility values in the NCSE-

02 earthquake-resistant code

should be revised.

Nevertheless, it is necessary

to point that WSFB exhibit

high overstrength level.

Figure 9(b) shows the

evolution of the damage

index for the studied waffled-

slab floor building,

quantifying stiffness loss in

the structural elements

resisting loads or the loads

leading to failure. This index

is calculated using the finite

element program PLCd with a

constitutive damage and

plasticity model that enables

correlation of damage with

lateral displacements30,38,39

D ¼ 1� kPink
kPin

0 k
4

where kPink and kPin
0 k are the norm of current and elastic

values of the internal forces vectors, respectively. Initially, the

material remains elastic and D ¼ 0, but when all the energy of

the material has been dissipated kPink ! 0 and D ! 1.

Figure 9(b) indicates the formation of the first micro-cracks in

the structure (point A) which increases until plastic hinges

appear at the ends of beams, expanding until the appearance of

cracks in the columns (point B) and then hinges appear at the

ends of the columns. Finally, the ultimate drift threshold is

reached (point C). It is of scientific and practical interest to

correlate the capacity curve of Figure 9(a) with the damage

curve of Figure 9(b). In the case of WSFB, it can be seen how

the global damage index of the structure corresponding to the

ultimate drift is of 77.5%.

The WSFB low ductility response can be attributed to the

formation of plastic hinges in the transition points between the

solid head and the slab ribs at the first floor. Slab elements are

subjected to bending induced by gravity loads, as well as to the

demands of seismic forces; hence, the zones requiring special

reinforcement are those closest to the slab–column node and

to the middle of the span, where the greatest bending moments

frequently appear. Efficient confinement in the central slab

zone is, however, technically complicated. This suggests the

existence, during earthquakes, of a possible mechanism of

structural failure, at the transition zone between the solid slab

and the ribs, and consequently, a low level of structure

ductility (see Figure 10).

5. MRFB NON-LINEAR RESPONSE

The capacity curve of the MRFB designed according to the EHE

and NCSE-02 Spanish codes is shown in Figure 11(a). The

curve clearly illustrates how this structural type is capable of

sustaining a stable ductile response, which is reflected in the

high value of the ultimate drift. Based on the idealised bilinear
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curve of Figure 11(a), a ductility of 5.17 is obtained; this is a

higher value than the one considered in the design, which is 4.

This means that MRFB has a ductile response to seismic forces,

as well as an adequate overstrength. Figure 11(b) shows the

evolution of the global damage index for this type of building,

with a maximum damage index of 82% corresponding to the

ultimate roof drift.

Figures 10(a) and 10(b) show the capacity curve and the

evolution of the damage, respectively, for the external frame of

the building designed according to the ACI-318. The main

difference between this building and the former is, on the one

hand, that the Spanish NCSE-02 earthquake-resistant code

limits to four the ductility for this class of buildings to four

and, on the other hand, that this code requires less transversal

and longitudinal reinforcement than the ACI-318 (2005). At the

same time, the details prescribed in the ACI-318 enable a

greater dissipation capacity.

The non-linear response of the ACI-318 moment-resisting

frame building is typical for RC low-rise buildings, which

generally undergo plastic hinges at the base of their ground

floor columns. This general tendency stems from the fact that

designing buildings with strong columns and weak beams is

not trivial, primarily owing to the predominance of

gravitational loads on the beams, which ultimately require

larger cross-sections than those of the columns. Figure 12(b)

shows that in this case the structure maximum global damage

index is 93%.

The above mentioned procedure has been validated by means

of non-linear dynamic analyses. The dynamic procedure

consists of applying sinusoidal ground acceleration with a peak

value scaled with respect to gravity acceleration and increased

until yielding is reached. Results obtained shows that the static

non-linear procedure allows for accurate calculation of

displacements, and that the non-linear dynamic response of the

WSFB under study shows a clear pinching behaviour, see

Figure 13(b).

6. FRAGILITY CURVES AND DAMAGE PROBABILITY

MATRICES

In order to evaluate the non-linear behaviour of the buildings,

the performance points were calculated by applying the N2

procedure.40 The performance points are defined as the

intersection of the capacity spectrum (obtained from the

Figure 10. Development of the plastic hinges at the frame
collapse
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capacity curve) with the inelastic demand spectrum (obtained

from the elastic design spectrum). Only two cases are included

because the non-linear behaviours of the MRFB designed

according to EHE and NCSE-02 are very similar to that of the

one designed according to ACI-318. The seismic demand is

obtained from the elastic spectrum prescribed by NCSE (see

Figure 4). Roof drifts are transformed into spectral

displacements through the equation

Sd ¼
�c
MPF

5

where Sd is the spectral displacement, �c is the roof drift and
MPF is the modal participation factor corresponding to first

mode. Values of the spectral displacements obtained for the

performance point are shown in Table 2.

Figures 14 and 15 show the capacity curves of each building

together with the stiffness corresponding to initial undamaged

state, to performance point and to ultimate drift. It can be

observed how close performance and ultimate drift points are

in the case of WSFBs.

Damage thresholds are determined using the of Vision 2000

procedure which expresses the thresholds in function of

interstorey drifts. Damage-states thresholds are determined

from both interstorey drift curve and capacity curve. Slight

damage state is defined as the roof drift corresponding to the

first plastic hinge. The moderate damage state corresponds to

the roof drift for which an interstorey drift of 1% is reached at

each level. Severe damage state is identified by a roof drift

which produces a 2.5% of interstorey drift at each level.

Finally, the total damage state (collapse) corresponds to the

ultimate roof displacement obtained from the capacity curve.

Values of the mean and standard deviation of the roof drift

normalised with respect to the building height are shown in

Table 3.

Fragility curves are obtained by considering a lognormal
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Figure 12. (a) Idealised capacity curve and (b) global damage
index evolution of the external frame of the MRFB designed
according to ACI-318 (2005) code
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Figure 13. Dynamic response of the two buildings designed
according to the NCSE-02: (a) applied sinusoidal excitation;
(b) WSFB and (c) MRFB

Building Roof drift of the performance point: mm

WSFB 222.07
MRFB 120.18

Table 2. Roof drift corresponding to the performance points
of the studied buildings

176 Structures and Buildings 162 Issue SB3 Seismic performance of waffled-slab floor buildings Vielma et al.



probability density function for the spectral displacements

defining damage states

F Sdð Þ ¼ 1

�dsSd

ffiffiffiffiffiffi
2�

p exp � 1

2

1

�ds
ln

Sd

Sd,ds

� �2
" #

6

where Sd,ds is the mean value of spectral displacement for

which the building reaches the damage-state threshold ds and

�ds is the standard deviation of the natural logarithm of the

spectral displacement for damage state ds. The conditional

probability P(Sd)of reaching or exceeding a particular damage

state ds, given the spectral displacement Sd, is defined as

P Sdð Þ ¼
ðSd

0

F Sdð Þd Sdð Þ7

Figures 16 and 17 show fragility curves calculated for WSFB

and MRFB, respectively.

Damage probability matrices are obtained by entering the

spectral displacement corresponding to the performance point

into the fragility curves. The values obtained represent the

exceeding probabilities of a damage state and are given in

Table 4 for the WSFB and MRFB considered in the analysis.

Table 4 shows that, for the demand being considered, there is a

high probability that the limited ductility buildings exceed the

severe damage state and the collapse state. Severe damage state

exceeding probability is of 36.2% for the WSFB. The collapse

WSFB MRFB

Limit state Mean Standard
deviation

Mean Standard
deviation

Slight damage 0.22 0.03 0.16 0.02
Moderate damage 0.67 0.04 0.93 0.05
Severe damage 1.67 0.11 2.06 0.10
Collapse 2.91 0.16 4.19 0.14

Table 3. Mean values and standard deviation of the normalised
roof drift for limit states
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Figure 15. Roof drift corresponding to the performance point
of the building with moment- resisting frames (NCSE-02
code)

WSFB MRFB

No damage 0.2% 0.4%
Slight 9.4% 40.3%
Moderate 24.6% 44.4%
Severe 36.2% 13.9%
Collapse 29.6% 1.0%

Table 4. Damage probability matrices for the studied building
typologies
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Spanish codes
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probabilities are 29.6% for the WSFB and only about 1% for

the MRFB.

7. POSSIBILITIES OF IMPROVING THE SEISIMC

RESPONSE OF WSFBS

Figure 18 shows the capacity curves corresponding to all cases

under study. Design base shears have also been plotted in this

figure, in which it is evident that each of the three buildings

has base shear coefficients greater than the design one,

indicating that they satisfy this initial design objective.

However, overstrength varies dramatically among the three

structures. It is interesting to compare the MRFB capacity

curves, which have similar structural typology but are designed

with different codes and thus their reduction factors differ.

Both exhibit ductility several times higher than that of the

WSFB while providing satisfactory overstrength.

Results of the WSFB non-linear analysis raise this question;

can their response be improved at design stage, in order to

reach the ductility values prescribed in the NCSE-02 code

maintaining the same structural typology? This section

discusses this possibility based on the pushover analysis

performed using the finite element method and comparing

responses obtained with those corresponding to the MRFB. For

the purpose of studying the influence of the steel type on the

WSFB non-linear response, steels with different mechanical

characteristics are considered. Buildings are calculated by

considering the reinforcement with either weldable-ductile steel

(WD), whose characteristics make it recommendable for the

earthquake-resistant design of structures according to the EHE

and Eurocode 8 specifications, or weldable steel (W) (see Table

5). For both cases, the yielding stresses B 400 and B 500 steel

were considered (see Figure 19).

Results of the pushover analysis are shown in Figure 19, which

reveals that frames reinforced with ductile steel have only a

slightly more ductile response than do those reinforced with

non-ductile steel. Hence, the building global response is

influenced to a much greater extent by the general

configuration and structural typology chosen than by the

characteristics of the reinforcement steel.

Finally, Figure 20 shows the same results obtained for the

MRFB reinforced with different types of steel. Observe that, in
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Figure 20. Capacity curve for the MRFB reinforced with steel
having different mechanical characteristics

Eurocode 8 EHE

Steel type B C B 400 WD B 500 WD

Yield stress f y: N/mm2 400–600 400–600 400 500
Ultimate stress f s: N/mm2 — — 480 575
Ratio fs/f y > 1.08 > 1.15 and < 1.35 > 1.20 and < 1.35 > 1.15 and < 1.35
Maximum strain �max: % > 5.0 > 7.5 > 9.0 > 8.0
Ultimate strain, �u: % — — > 20.0 > 16.0

Table 5. Characteristics of the steel recommended by Eurocode 8 and by EHE for the design of ductile reinforced concrete
buildings
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this case, increasing the steel ductility leads to a major increase

in structural ductility.

8. CONCLUSIONS

(a) The WSFB seismic behaviour has been studied using the

pushover analysis with force control. In order to determine

the structure ultimate drift threshold, global damage index

must approximate to a value of 0.8. Yielding drifts of the

structures are obtained using the idealised bilinear capacity

curves proposed by Park.

(b) Among the cases studied only the MRFB exhibit sufficient

ductility and overstrength to guarantee a stable behaviour,

showing ductility values higher than those of the design.

(c) It has been proved in this paper that WSFB should be

designed for lower ductility levels than those prescribed in

the Spanish seismic code (NCSE-02) because the prescribed

design values (� ¼ 2) are greater than the obtained from

numerical simulations (� ¼ 1.57). Nevertheless, during

earthquakes, WSFB show adequate overstrength.

(d ) It can also be seen that the exceeding probabilities for the

MRFB damage states are lower than those of WSFB.

(e) Structural response of the WSFB cannot be improved using

better mechanical characteristics of materials or a better

confinement of their members.

( f ) The only possibility of improving the WSFB behaviour is to

add depth beams to in order to increase their lateral

stiffness.
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APPENDIX

Reinforcement details of the three studied buildings
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Figure 21. Details of the equivalent frame of the WSFB designed according to NCSE-02 code
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Figure 23. Details of the moment-resisting frame designed according to EHE/NCSE-02 codes
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