18,952 research outputs found

    An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock

    Full text link
    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfill the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-P\'erot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE's fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 1E-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.Comment: 7 pages, 6 figure

    Strong spin-orbit splitting on Bi surfaces

    Get PDF
    Using first-principles calculations and angle-resolved photoemission, we show that the spin-orbit interaction leads to a strong splitting of the surface state bands on low-index surfaces of Bi. The dispersion of the states and the corresponding Fermi surfaces are profoundly modified in the whole surface Brillouin zone. We discuss the implications of these findings with respect to a proposed surface charge density wave on Bi(111) as well as to the surface screening, surface spin-density waves, electron (hole) dynamics in surface states, and to possible applications to the spintronics.Comment: 4 pages 2 figure

    Sliding mode control of quantum systems

    Full text link
    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.Comment: 18 pages, 4 figure

    On the distribution of career longevity and the evolution of home run prowess in professional baseball

    Full text link
    Statistical analysis is a major aspect of baseball, from player averages to historical benchmarks and records. Much of baseball fanfare is based around players exceeding the norm, some in a single game and others over a long career. Career statistics serve as a metric for classifying players and establishing their historical legacy. However, the concept of records and benchmarks assumes that the level of competition in baseball is stationary in time. Here we show that power-law probability density functions, a hallmark of many complex systems that are driven by competition, govern career longevity in baseball. We also find similar power laws in the density functions of all major performance metrics for pitchers and batters. The use of performance-enhancing drugs has a dark history, emerging as a problem for both amateur and professional sports. We find statistical evidence consistent with performance-enhancing drugs in the analysis of home runs hit by players in the last 25 years. This is corroborated by the findings of the Mitchell Report [1], a two-year investigation into the use of illegal steroids in major league baseball, which recently revealed that over 5 percent of major league baseball players tested positive for performance-enhancing drugs in an anonymous 2003 survey.Comment: 5 pages, 5 figures, 2-column revtex4 format. Revision has change of title, a figure added, and minor changes in response to referee comment

    Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage

    Full text link
    We present a coupled Boltzmann and hydrodynamics approach to relativistic heavy ion reactions. This hybrid approach is based on the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. Event-by-event fluctuations are directly taken into account via the non-equilibrium initial conditions generated by the initial collisions and string fragmentations in the microscopic UrQMD model. After a (3+1)-dimensional ideal hydrodynamic evolution, the hydrodynamical fields are mapped to hadrons via the Cooper-Frye equation and the subsequent hadronic cascade calculation within UrQMD proceeds to incorporate the important final state effects for a realistic freeze-out. This implementation allows to compare pure microscopic transport calculations with hydrodynamic calculations using exactly the same initial conditions and freeze-out procedure. The effects of the change in the underlying dynamics - ideal fluid dynamics vs. non-equilibrium transport theory - will be explored. The freeze-out and initial state parameter dependences are investigated for different observables. Furthermore, the time evolution of the baryon density and particle yields are discussed. We find that the final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The results of the different calculations for the mean transverse mass excitation function, rapidity and transverse mass spectra for different particle species at three different beam energies are discussed in the context of the available data.Comment: 20 pages, 21 figures, 1 additional figure, minor corrections and revised figures for clarity, version published in PR

    Energy Dependence of High Moments for Net-proton Distributions

    Get PDF
    High moments of multiplicity distributions of conserved quantities are predicted to be sensitive to critical fluctuations. To understand the effect of the complicated non-critical physics backgrounds on the proposed observable, we have studied various moments of net-proton distributions with AMPT, Hijing, Therminator and UrQMD models, in which no QCD critical point physics is implemented. It is found that the centrality evolution of various moments of net-proton distributions can be uniformly described by a superposition of emission sources. In addition, in the absence of critical phenomena, some moment products of net-proton distribution, related to the baryon number susceptibilities ratio in Lattice QCD calculation, are predicted to be constant as a function of the collision centrality. We argue that a non-monotonic dependence of the moment products as a function collision centrality and the beam energy may be used to locate the QCD critical point.Comment: SQM2009 Proceeding, 6 pages, 5 figure

    (3+1)-Dimensional Hydrodynamic Expansion with a Critical Point from Realistic Initial Conditions

    Full text link
    We investigate a (3+1)-dimensional hydrodynamic expansion of the hot and dense system created in head-on collisions of Pb+Pb/Au+Au at beam energies from 5200A5-200A GeV. An equation of state that incorporates a critical end point (CEP) in line with the lattice data is used. The necessary initial conditions for the hydrodynamic evolution are taken from a microscopic transport approach (UrQMD). We compare the properties of the initial state and the full hydrodynamical calculation with an isentropic expansion employing an initial state from a simple overlap model. We find that the specific entropy (S/AS/A) from both initial conditions is very similar and only depends on the underlying equation of state. Using the chiral (hadronic) equation of state we investigate the expansion paths for both initial conditions. Defining a critical area around the critical point, we show at what beam energies one can expect to have a sizable fraction of the system close to the critical point. Finally, we emphasise the importance of the equation of state of strongly interacting matter, in the (experimental) search for the CEP.Comment: 8 pages, 8 figure

    Modeling and Computer Simulation of the Pulsed Powering of Mechanical D.C. Circuit Breakers for the CERN/LHC Superconducting Magnet Energy Extraction System

    Get PDF
    This article presents the results of modeling and computer simulation of non-linear devices such as the Electromagnetic Driver of a D.C. Circuit Breaker. The mechanical and electromagnetic parts of the Driver are represented as equivalent electrical circuits and all basic processes of the Driver's magnetic circuit are calculated
    corecore