1,047 research outputs found

    Fracture and Friction: Stick-Slip Motion

    Full text link
    We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs, when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear viscous friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first order phase transitions we discuss a ``soft'' selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as function of the driving velocity. The relevance of our results to recent experiments is discussed.Comment: 12 pages, 7 figure

    Spectroscopy of SMC Wolf-Rayet Stars Suggests that Wind-Clumping does not Depend on Ambient Metallicity

    Get PDF
    The mass-loss rates of hot, massive, luminous stars are considered a decisive parameter in shaping the evolutionary tracks of such stars and influencing the interstellar medium on galactic scales. The small-scale structures (clumps) omnipresent in such winds may reduce empirical estimates of mass-loss rates by an evolutionarily significant factor of >=3. So far, there has been no direct observational evidence that wind-clumping may persist at the same level in environments with a low ambient metallicity, where the wind-driving opacity is reduced. Here we report the results of time-resolved spectroscopy of three presumably single Population I Wolf-Rayet stars in the Small Magellanic Cloud, where the ambient metallicity is ~1/5 Z_Sun.We detect numerous small-scale emission peaks moving outwards in the accelerating parts of the stellar winds.The general properties of the moving features, such as their velocity dispersions,emissivities and average accelerations, closely match the corresponding characteristics of small-scale inhomogeneities in the winds of Galactic Wolf-Rayet stars.Comment: 9 pages, 3 figures; accepted by ApJ Letter

    Transfer matrix solution of the Wako-Sait\^o-Mu\~noz-Eaton model augmented by arbitrary short range interactions

    Full text link
    The Wako-Sait{\^o}-Mu\~noz-Eaton (WSME) model, initially introduced in the theory of protein folding, has also been used in modeling the RNA folding and some epitaxial phenomena. The advantage of this model is that it admits exact solution in the general inhomogeneous case (Bruscolini and Pelizzola, 2002) which facilitates the study of realistic systems. However, a shortcoming of the model is that it accounts only for interactions within continuous stretches of native bonds or atomic chains while neglecting interstretch (interchain) interactions. But due to the biopolymer (atomic chain) flexibility, the monomers (atoms) separated by several non-native bonds along the sequence can become closely spaced. This produces their strong interaction. The inclusion of non-WSME interactions into the model makes the model more realistic and improves its performance. In this study we add arbitrary interactions of finite range and solve the new model by means of the transfer matrix technique. We can therefore exactly account for the interactions which in proteomics are classified as medium- and moderately long-range ones.Comment: 15 pages, 2 figure

    Structural compliance, misfit strain and stripe nanostructures in cuprate superconductors

    Full text link
    Structural compliance is the ability of a crystal structure to accommodate variations in local atomic bond-lengths without incurring large strain energies. We show that the structural compliance of cuprates is relatively small, so that short, highly doped, Cu-O-Cu bonds in stripes are subject to a tensile misfit strain. We develop a model to describe the effect of misfit strain on charge ordering in the copper oxygen planes of oxide materials and illustrate some of the low energy stripe nanostructures that can result.Comment: 4 pages 5 figure

    Absence of the Transition into Abrikosov Vortex State of Two-Dimensional Type-II Superconductor with Weak Pinning

    Full text link
    The resistive properties of thin amorphous NbO_{x} films with weak pinning were investigated experimentally above and below the second critical field H_{c2}. As opposed to bulk type II superconductors with weak pinning where a sharp change of resistive properties at the transition into the Abrikosov state is observed at H_{c4}, some percent below H_{c2} (V.A.Marchenko and A.V.Nikulov, 1981), no qualitative change of resistive properties is observed down to a very low magnetic field, H_{c4} < 0.006 H_{c2}, in thin films with weak pinning. The smooth dependencies of the resistivity observed in these films can be described by paraconductivity theory both above and below H_{c2}. This means that the fluctuation superconducting state without phase coherence remains appreciably below H_{c2} in the two-dimensional superconductor with weak pinning. The difference the H_{c4}/H_{c2} values, i.e. position of the transition into the Abrikosov state, in three- and two-dimensional superconductors conforms to the Maki-Takayama result 1971 year according to which the Abrikosov solution 1957 year is valid only for a superconductor with finite dimensions. Because of the fluctuation this solution obtained in the mean field approximation is not valid in a relatively narrow region below H_{c2} for bulk superconductors with real dimensions and much below H_{c2} for thin films with real dimensions. The superconducting state without phase coherence should not be identified with the mythical vortex liquid because the vortex, as a singularity in superconducting state with phase coherence, can not exist without phase coherence.Comment: 4 pages, 4 figure

    Bunching Transitions on Vicinal Surfaces and Quantum N-mers

    Full text link
    We study vicinal crystal surfaces with the terrace-step-kink model on a discrete lattice. Including both a short-ranged attractive interaction and a long-ranged repulsive interaction arising from elastic forces, we discover a series of phases in which steps coalesce into bunches of n steps each. The value of n varies with temperature and the ratio of short to long range interaction strengths. We propose that the bunch phases have been observed in very recent experiments on Si surfaces. Within the context of a mapping of the model to a system of bosons on a 1D lattice, the bunch phases appear as quantum n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let

    Universal Aspects of Coulomb Frustrated Phase Separation

    Full text link
    We study the consequences of Coulomb interactions on a system undergoing a putative first order phase transition. In two dimensions (2D), near the critical density, the system is universally unstable to the formation of new intermediate phases, which we call ``electronic microemulsion phases,'' which consist of an intermediate scale mixture of regions of the two competing phases. A correlary is that there can be no direct transition as a function of density from a 2D Wigner crystal to a uniform electron liquid. In 3D, %we find that if the strength of the Coulomb interactions exceeds a critical value, no phase separation occurs, while for weaker Coulomb strength, electronic microemulsions are inevitable. This tendency is considerably more pronounced in anisotropic (quasi 2D or quasi 1D) systems, where a devil's staircase of transitions is possible.Comment: 4 pg

    Inverse spectral problems for Sturm--Liouville operators with matrix-valued potentials

    Full text link
    We give a complete description of the set of spectral data (eigenvalues and specially introduced norming constants) for Sturm--Liouville operators on the interval [0,1][0,1] with matrix-valued potentials in the Sobolev space W2−1W_2^{-1} and suggest an algorithm reconstructing the potential from the spectral data that is based on Krein's accelerant method.Comment: 39 pages, uses iopart.cls, iopams.sty and setstack.sty by IO
    • …
    corecore