185 research outputs found

    HLA and disease association

    Get PDF
    The major histocompatibility complex (MHC) is a genetic system of over 70 known genes on the short arm of chromosome 6 and spans about 4 million base pairs of DNA. The high resolution typing of class I and class I MHC genes and the identification of other genes in the region have increased the definition of the genetic basis of immune responses and diseases of unknown etiology such as the autoimmune diseases. In this paper, I review the literature about HLA and migraine

    QP and QS of Campi Flegrei from the inversion of rayleigh waves recorded during the SERAPIS project

    Get PDF
    Seismic shots recorded during the SERAPIS experiment were used to search a 1D elastic and inelastic model of the Gulf of Pozzuoli, south of the CampiFlegrei caldera. Waveforms were gaussian filtered in the range 5-8 Hz with afrequency step of 0.5 Hz and a half-width of the filter equal to 0.5 Hz. A cleardispersion of the most energetic propagation mode was revealed. This pro-perty of the surface wave in the gulf of Pozzuoli was theoretically reprodu-ced using the classical wave-number technique. To infer the best fit propaga-tion model, we developed a semi-automated procedure of fitting of filteredtraces with progressive adjustment of the model. The quality of the fitting wasestimated using the semblance among each couple of waveform (syntheticand observed). Our formulation allowed us also to estimate the error onmodel parameter by mapping the noise on seismograms on the semblance. The obtained 1D model confirms that in average intrinsic Qp at the CampiFlegrei caldera is of the order of 300-500 which is a background value higherthan that of other volcanic areas. This report is a summary of a part of the phd thesis in Earth Sciences atUniversity of Bari of Maria Trabace

    Ketamine administration in early postnatal life as a tool for mimicking Autism Spectrum Disorders core symptoms

    Get PDF
    Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour

    Glucoraphanin Triggers Rapid Antidepressant Responses in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour

    Get PDF
    Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAβ 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAβ-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAβ 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression

    Precision Medicine in Alzheimer’s Disease: Investigating Comorbid Common Biological Substrates in the Rat Model of Amyloid Beta-Induced Toxicity

    Get PDF
    Alzheimer’s disease (AD), one of the most widespread neurodegenerative disorder, is a fatal global burden for the elder population. Although many efforts have been made, the search of a curative therapy is still ongoing. Individuating phenotypic traits that might help in investigating treatment response is of growing interest in AD research. AD is a complex pathology characterized by many comorbidities, such as depression and increased susceptibility to pain perception, leading to postulate that these conditions may rely on common biological substrates yet to be determined. In order to investigate those biological determinants to be associable with phenotypic traits, we used the rat model of amyloid beta-induced toxicity. This established model of early phase of AD is obtained by the intracerebroventricular injection of soluble amyloid beta1-42 (Aβ) peptide 7 days before performing experiments. In this model, we have previously reported increased immobility in the forced swimming test, reduced cortical serotonin levels and subtle alterations in the cognitive domain a depressive-like phenotype associated with subtle alteration in memory processes. In light of evaluating pain perception in this animal model, we performed two different behavioral tests commonly used, such as the paw pressure test and the cold plate test, to analyze mechanical hyperalgesia and thermal allodynia, respectively. Behavioural outcomes confirmed the memory impairment in the social recognition test and, compared to sham, Aβ-injected rats showed an increased selective susceptibility to mechanical but not to thermal stimulus. Behavioural data were then corroborated by neurochemical and biochemical biomarker analyses either at central or peripheral level. Data showed that the peptide injection evoked a significant increase in hypothalamic glutamate, kynurenine and dopamine content, while serotonin levels were reduced. Plasma Cystatin-C, a cysteine protease, was increased while serotonin and melatonin levels were decreased in Aβ-injected rats. Urinary levels paralleled plasma quantifications, indicating that Aβ-induced deficits in pain perception, mood and cognitive domain may also depend on these biomarkers. In conclusion, in the present study, we demonstrated that this animal model can mimic several comorbid conditions typical of the early phase of AD. Therefore, in the perspective of generating novel therapeutic strategies relevant to precision medicine in AD, this animal model and the biomarkers evaluated herein may represent an advantageous approach

    Extreme rainfall events in karst environments: the case study of September 2014 in the Gargano area (southern Italy)

    Get PDF
    In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and forecasts with empirical rainfall thresholds for the prediction of landslide occurrence. SANF forecasts were compared to the documented landslides and discussed

    The NADPH oxidase NOX2 as a novel biomarker for suicidality: Evidence from human post mortem brain samples

    Get PDF
    Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention

    Glucoraphanin Triggers Rapid Antidepressant Responses in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour

    Get PDF
    Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAβ 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAβ-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAβ 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression

    Precision Medicine in Alzheimer’s Disease: Investigating Comorbid Common Biological Substrates in the Rat Model of Amyloid Beta-Induced Toxicity

    Get PDF
    Alzheimer’s disease (AD), one of the most widespread neurodegenerative disorder, is a fatal global burden for the elder population. Although many efforts have been made, the search of a curative therapy is still ongoing. Individuating phenotypic traits that might help in investigating treatment response is of growing interest in AD research. AD is a complex pathology characterized by many comorbidities, such as depression and increased susceptibility to pain perception, leading to postulate that these conditions may rely on common biological substrates yet to be determined. In order to investigate those biological determinants to be associable with phenotypic traits, we used the rat model of amyloid beta-induced toxicity. This established model of early phase of AD is obtained by the intracerebroventricular injection of soluble amyloid beta1-42 (Aβ) peptide 7 days before performing experiments. In this model, we have previously reported increased immobility in the forced swimming test, reduced cortical serotonin levels and subtle alterations in the cognitive domain a depressive-like phenotype associated with subtle alteration in memory processes. In light of evaluating pain perception in this animal model, we performed two different behavioral tests commonly used, such as the paw pressure test and the cold plate test, to analyze mechanical hyperalgesia and thermal allodynia, respectively. Behavioural outcomes confirmed the memory impairment in the social recognition test and, compared to sham, Aβ-injected rats showed an increased selective susceptibility to mechanical but not to thermal stimulus. Behavioural data were then corroborated by neurochemical and biochemical biomarker analyses either at central or peripheral level. Data showed that the peptide injection evoked a significant increase in hypothalamic glutamate, kynurenine and dopamine content, while serotonin levels were reduced. Plasma Cystatin-C, a cysteine protease, was increased while serotonin and melatonin levels were decreased in Aβ-injected rats. Urinary levels paralleled plasma quantifications, indicating that Aβ-induced deficits in pain perception, mood and cognitive domain may also depend on these biomarkers. In conclusion, in the present study, we demonstrated that this animal model can mimic several comorbid conditions typical of the early phase of AD. Therefore, in the perspective of generating novel therapeutic strategies relevant to precision medicine in AD, this animal model and the biomarkers evaluated herein may represent an advantageous approach

    Effect of High-Titer Convalescent Plasma on Progression to Severe Respiratory Failure or Death in Hospitalized Patients with COVID-19 Pneumonia: A Randomized Clinical Trial

    Get PDF
    Importance: Convalescent plasma (CP) has been generally unsuccessful in preventing worsening of respiratory failure or death in hospitalized patients with COVID-19 pneumonia. Objective: To evaluate the efficacy of CP plus standard therapy (ST) vs ST alone in preventing worsening respiratory failure or death in patients with COVID-19 pneumonia. Design, Setting, and Participants: This prospective, open-label, randomized clinical trial enrolled (1:1 ratio) hospitalized patients with COVID-19 pneumonia to receive CP plus ST or ST alone between July 15 and December 8, 2020, at 27 clinical sites in Italy. Hospitalized adults with COVID-19 pneumonia and a partial pressure of oxygen-to-fraction of inspired oxygen (Pao2/Fio2) ratio between 350 and 200 mm Hg were eligible. Interventions: Patients in the experimental group received intravenous high-titer CP (≥1:160, by microneutralization test) plus ST. The volume of infused CP was 200 mL given from 1 to a maximum of 3 infusions. Patients in the control group received ST, represented by remdesivir, glucocorticoids, and low-molecular weight heparin, according to the Agenzia Italiana del Farmaco recommendations. Main Outcomes and Measures: The primary outcome was a composite of worsening respiratory failure (Pao2/Fio2ratio <150 mm Hg) or death within 30 days from randomization. Results: Of the 487 randomized patients (241 to CP plus ST; 246 to ST alone), 312 (64.1%) were men; the median (IQR) age was 64 (54.0-74.0) years. The modified intention-to-treat population included 473 patients. The primary end point occurred in 59 of 231 patients (25.5%) treated with CP and ST and in 67 of 239 patients (28.0%) who received ST (odds ratio, 0.88; 95% CI, 0.59-1.33; P =.54). Adverse events occurred more frequently in the CP group (12 of 241 [5.0%]) compared with the control group (4 of 246 [1.6%]; P =.04). Conclusions and Relevance: In patients with moderate to severe COVID-19 pneumonia, high-titer anti-SARS-CoV-2 CP did not reduce the progression to severe respiratory failure or death within 30 days. Trial Registration: ClinicalTrials.gov Identifier: NCT04716556
    corecore