535 research outputs found

    Unusual superexchange pathways in a Ni triangular lattice of NiGa2_2S4_4 with negative charge-transfer energy

    Full text link
    We have studied the electronic structure of the Ni triangular lattice in NiGa2_2S4_4 using photoemission spectroscopy and subsequent model calculations. The cluster-model analysis of the Ni 2pp core-level spectrum shows that the S 3pp to Ni 3dd charge-transfer energy is ∼\sim -1 eV and the ground state is dominated by the d9Ld^9L configuration (LL is a S 3pp hole). Cell perturbation analysis for the NiS2_2 triangular lattice indicates that the strong S 3pp hole character of the ground state provides the enhanced superexchange interaction between the third nearest neighbor sites.Comment: 10 pages, 5 figures, accepted to PR

    Aharonov-Bohm interference in the presence of metallic mesoscopic cylinders

    Get PDF
    This work studies the interference of electrons in the presence of a line of magnetic flux surrounded by a normal-conducting mesoscopic cylinder at low temperature. It is found that, while there is a supplementary phase contribution from each electron of the mesoscopic cylinder, the sum of these individual supplementary phases is equal to zero, so that the presence of a normal-conducting mesoscopic ring at low temperature does not change the Aharonov-Bohm interference pattern of the incident electron. It is shown that it is not possible to ascertain by experimental observation that the shielding electrons have responded to the field of an incident electron, and at the same time to preserve the interference pattern of the incident electron. It is also shown that the measuring of the transient magnetic field in the region between the two paths of an electron interference experiment with an accuracy at least equal to the magnetic field of the incident electron generates a phase uncertainty which destroys the interference pattern.Comment: 15 pages, 5 Postscript figure

    Re-parameterization Invariance in Fractional Flux Periodicity

    Full text link
    We analyze a common feature of a nontrivial fractional flux periodicity in two-dimensional systems. We demonstrate that an addition of fractional flux can be absorbed into re-parameterization of quantum numbers. For an exact fractional periodicity, all the electronic states undergo the re-parameterization, whereas for an approximate periodicity valid in a large system, only the states near the Fermi level are involved in the re-parameterization.Comment: 4 pages, 1 figure, minor changes, final version to appear in J. Phys. Soc. Jp

    Driven depinning of strongly disordered media and anisotropic mean-field limits

    Get PDF
    Extended systems driven through strong disorder are modeled generically using coarse-grained degrees of freedom that interact elastically in the directions parallel to the driving force and that slip along at least one of the directions transverse to the motion. A realization of such a model is a collection of elastic channels with transverse viscous couplings. In the infinite range limit this model has a tricritical point separating a region where the depinning is continuous, in the universality class of elastic depinning, from a region where depinning is hysteretic. Many of the collective transport models discussed in the literature are special cases of the generic model.Comment: 4 pages, 2 figure

    Corpuscular Event-by-Event Simulation of Quantum Optics Experiments: Application to a Quantum-Controlled Delayed-Choice Experiment

    Full text link
    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. The approach is illustrated by application to a recent proposal for a quantum-controlled delayed choice experiment, demonstrating that also this thought experiment can be understood in terms of particle processes only.Comment: Invited paper presented at FQMT11. Accepted for publication in Physica Scripta 27 June 201

    Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes

    Full text link
    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observation of the Aharonov-Bohm effect at the nano--scale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab-initio approach based on Density Functional Theory we show that this assumption fails at the nano-scale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of a large metallic phase in the low flux regime of Multi-walled nanotubes, also suggesting possible experiments to validate our results.Comment: 7 figure

    Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments

    Full text link
    We show that the standard Dirac phase factor is not the only solution of the gauge transformation equations. The full form of a general gauge function (that connects systems that move in different sets of scalar and vector potentials), apart from Dirac phases also contains terms of classical fields that act nonlocally (in spacetime) on the local solutions of the time-dependent Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger picture are affected nonlocally by spatially and temporally remote magnetic and electric fields, in ways that are fully explored. These contributions go beyond the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to cases of particles passing through static magnetic or electric fields leads to cancellations of Aharonov-Bohm phases at the observation point; these are linked to behaviors at the semiclassical level (to the old Werner & Brill experimental observations, or their "electric analogs" - or to recent reports of Batelaan & Tonomura) but are shown to be far more general (true not only for narrow wavepackets but also for completely delocalized quantum states). By using these cancellations, certain previously unnoticed sign-errors in the literature are corrected. (ii) Application to time-dependent situations provides a remedy for erroneous results in the literature (on improper uses of Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and a field-nonlocal part: their competition is shown to recover Relativistic Causality in earlier "paradoxes" (such as the van Kampen thought-experiment), while a more general consideration indicates that the temporal nonlocalities found here demonstrate in part a causal propagation of phases of quantum mechanical wavefunctions in the Schr\"odinger picture. This may open a direct way to address time-dependent double-slit experiments and the associated causal issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and Bristol), published in Journ. Phys. A. Compared to the published paper, this version has 17 additional lines after eqn.(14) for maximum clarity, and the Abstract has been slightly modified and reduced from the published 2035 characters to the required 1920 character

    The Locality Problem in Quantum Measurements

    Full text link
    The locality problem of quantum measurements is considered in the framework of the algebraic approach. It is shown that contrary to the currently widespread opinion one can reconcile the mathematical formalism of the quantum theory with the assumption of the existence of a local physical reality determining the results of local measurements. The key quantum experiments: double-slit experiment on electron scattering, Wheeler's delayed-choice experiment, the Einstein-Podolsky-Rosen paradox, and quantum teleportation are discussed from the locality-problem point of view. A clear physical interpretation for these experiments, which does not contradict the classical ideas, is given.Comment: Latex, 40 pages, 7 figure

    Models of plastic depinning of driven disordered systems

    Full text link
    Two classes of models of driven disordered systems that exhibit history-dependent dynamics are discussed. The first class incorporates local inertia in the dynamics via nonmonotonic stress transfer between adjacent degrees of freedom. The second class allows for proliferation of topological defects due to the interplay of strong disorder and drive. In mean field theory both models exhibit a tricritical point as a function of disorder strength. At weak disorder depinning is continuous and the sliding state is unique. At strong disorder depinning is discontinuous and hysteretic.Comment: 3 figures, invited talk at StatPhys 2

    Corpuscular model of two-beam interference and double-slit experiments with single photons

    Get PDF
    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.Comment: Accepted for publication in J. Phys. Soc. Jpn
    • …
    corecore