We introduce an event-based corpuscular simulation model that reproduces the
wave mechanical results of single-photon double slit and two-beam interference
experiments and (of a one-to-one copy of an experimental realization) of a
single-photon interference experiment with a Fresnel biprism. The simulation
comprises models that capture the essential features of the apparatuses used in
the experiment, including the single-photon detectors recording individual
detector clicks. We demonstrate that incorporating in the detector model,
simple and minimalistic processes mimicking the memory and threshold behavior
of single-photon detectors is sufficient to produce multipath interference
patterns. These multipath interference patterns are built up by individual
particles taking one single path to the detector where they arrive one-by-one.
The particles in our model are not corpuscular in the standard, classical
physics sense in that they are information carriers that exchange information
with the apparatuses of the experimental set-up. The interference pattern is
the final, collective outcome of the information exchanges of many particles
with these apparatuses. The interference patterns are produced without making
reference to the solution of a wave equation and without introducing signalling
or non-local interactions between the particles or between different detection
points on the detector screen.Comment: Accepted for publication in J. Phys. Soc. Jpn