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Extended systems driven through strong disorder are modeled generically using coarse-grained
degrees of freedom that interact elastically in the directions parallel to the drive and slip along at least
one of the directions transverse to the motion. In the limit of infinite-range elastic and viscous coupling
this model has a tricritical point separating a region where the depinning is continuous, in the
universality class of elastic depinning, from a region where depinning is hysteretic. Many of the
collective transport models discussed in the literature are special cases of the generic model.
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Nonequilibrium transitions from stuck to moving
states underlie the physics of a wide range of phenomena,
from fracture and earthquake rupture to flux flow in type-
IT superconductors [1]. Various dynamical models have
been proposed in different contexts. One class of models,
overdamped elastic media pulled by an applied force F,
has been studied extensively. These predict a nonequili-
brium phase transition from a pinned state to a sliding
state at a critical value F; of the driving force.
Generically, this depinning transition displays critical
behavior as in equilibrium continuous transitions [2],
with the medium’s mean velocity v acting as the order
parameter. In overdamped elastic media, the sliding state
is unique and no hysteresis can occur [4]. Universality
classes have been identified, which are distinguished, for
example, by the range of interactions or by the perio-
dicity (or nonperiodicity) of the pinning forces.

The elastic medium model is often inadequate to de-
scribe many systems which exhibit plasticity (e.g., due to
topological defects in the medium) or inertial effects
(underdamping). The dynamics in plastic systems can
be inhomogeneous, with coexisting pinned and moving
regions. The depinning transition may be discontinuous
(first order), possibly with macroscopic hysteresis. Several
mean-field models of driven extended systems with lo-
cally underdamped relaxation or phase slip have been
proposed in the literature [1,5-10].

In this Letter, we present a model of driven disordered
systems that encompasses several of the models discussed
in the literature. This model incorporates the anisotropy
of the sliding state in the plastic flow region that results
either from flow along coupled channels oriented in the
direction of drive (e.g., as in the moving smectic phase
[11]) or in layered materials such as the high-T, cuprate
superconductors. We restrict ourselves to systems with a
periodic structure along the direction of motion, such as
charge density waves (CDWs), 2D colloidal arrays, and
vortex lattices in type-II superconductors and consider
only the dynamics of a scalar displacement field. This
model uses coarse-grained degrees of freedom that are
solidlike regions. These volumes slip relative to each
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other in the transverse dimensions, due to the presence
of small scale defects (phase slips, dislocations, etc.) at
their boundaries, but remain elastically coupled in the
longitudinal dimensions. Our current results are for the
mean-field limits, in the transverse dimensions at least,
with transverse viscous interactions. The studies carried
out so far of these types of models for finite range inter-
actions [12,13] suggest that the mean-field approximation
described here may give the correct topology for the
phase diagram, although there will be corrections to the
critical behavior in finite dimensions.

Anisotropic slip model—Elastic models have their lim-
its in describing real materials. Coppersmith argued that
elastic models with weak disorder have arbitrarily large
strains, as large rare regions with atypically low pinning
result in large displacement gradients [14,15]. Though the
elastic model breaks down, the low density of such re-
gions may preclude its easy observation. Simulations,
imaging, and noise experiments for moderate and strong
disorder also indicate the breakdown of the elastic model
[16—21]. These calculations and observations often show
a sliding state that consists of coherent regions moving at
different average velocities, with extended defect struc-
tures along their boundaries. The dynamics is strongly
anisotropic, with slip occurring preferentially where the
shear deformations are largest, at the borders of channels
that are on average aligned with the direction of motion.
Guided by this work, we propose an anisotropic descrip-
tion of the inhomogeneous dynamics.

We consider a d = d|| + d | -dimensional medium com-
posed of d|-dimensional elastic channels coupled via
interactions that allow for slip of the channels in the
remaining d directions. The system is driven by a uni-
form force F along one of the d directions. A cartoon of
a1l + 1-dimensional system is shown in Fig. 1. We choose
to discretize space in both transverse and longitudinal
directions, using integer vectors i for the d)-dimensional
intralayer index and ¢ for the d |, -dimensional layer index.
The local displacement along the direction of motion is
¢ (). Assuming overdamped dynamics, the equation of
motion in the laboratory frame [22] is
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FIG. 1 (color online). A two-dimensional realization of the
anisotropic driven medium. Degrees of freedom are labeled by
discrete indices € (parallel to driving force F) and i (transverse
to F). Each degree of freedom interacts with its neighbors via
elastic couplings in the longitudinal direction and via viscous
or similar slip couplings in the transverse direction.
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where the dot denotes a time derivative (time is scaled so
that the damping constant is unity) and (j) are the nearest
neighbors to i. The first term on the right-hand side
represents an elastic intrachannel coupling of strength
K. The third term is the pinning force. The function
Y(x) has period 1, and the ¢/, are random phases chosen
independently and uniformly in [0, 1). The random pin-
ning strengths h% are chosen from a probability distribu-
tion p(h). Finally, o, represents an interaction (of type
«) that allows for slips of neighboring channels. In this
Letter, we assume a linear viscoelastic (V) stress-strain
relation,

oty = [ arSs- e - 0l @
0 m)

where (m) indexes the layers neighboring €. The stress
transfer function [1,5] J¢ , is generally nonlocal in space
and/or time. We focus on a simplified version of the
viscoelastic model where the local shp force is a purely
viscous coupling of strength 7 : 0'45, = T]Z(m}(¢m

gbe) With this coupling, Eq. (1) is a simplified “viscous
slip” form of the hydrodynamics of a driven viscoelastic
medium that flows in response to large-scale shear, but
responds elastically within the layers to long-wavelength
compressions [23]. Gradients of the displacement trans-
verse to the channels or layers correspond to shear defor-
mations arising from defect structures between the
channels. Some justification for modeling the slip that
results from moving defects as viscous couplings comes
from work [24] showing that that the hydrodynamics of a
two-dimensional crystal with free dislocations is identi-
cal to that of a viscoelastic fluid. In contrast, gradients of
displacement longitudinal to the drive mainly yield com-
pressional deformations (exactly so when d = 1). The
elastic response to long-wavelength compressions in flu-
ids is intimately related to the fact that compressions are
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associated with fluctuations in the conserved density,
suggesting that the inclusion of compressional forces is
necessary to describe the dynamics of systems with a
conserved number of particles, such as vortex lattices.
The coarse-grained model, Eq. (1), allows us to inves-
tigate the competition between elastic interaction and
plastic flow in controlling the topology of the nonequili-
brium phase diagram.

Mean-field treatment.—One mean-field approximation
for the viscous slip model is obtained by taking the
interactions to be infinite ranged in both the transverse
and longitudinal directions. Each displacement then cou-
ples to others only through the mean VClOClty, v =
N'Y i, and the mean displacement, ¢ = N~ 'Y ¢,
We look for solutions with stationary velocity: ¢ = vt.
As all displacements ¢ are coupled, they can be indexed
by their disorder parameters ¢ and h, rather than the
spatial indices. The mean-field dynamics is governed by
the equation

(1+ ), h) = K(vt — ) + F + qu + hY(p — ).

3)

When K = 0, the mean-field velocity is determined by
the self-consistency condition {¢(h)), = v, where the
subscript / indicates an average over the distribution of
pinning strengths p(k). When K # 0, the mean-field ve-
locity is found by imposing (¢(h, ¢) — vi),, = 0.

It is useful to review the case where = 0 and K # 0.
In this limit, Eq. (3) reduces to the mean-field theory of a
driven elastic medium worked out by Fisher and collabo-
rators [25]. For the piecewise harmonic pinning Y(¢) =
1/2 — ¢ for 0 = ¢ = 1, no moving solution exists for
F < F; ={(h*/[2(K + h)]),,. Just above threshold the
mean velocity has a universal dependence on the driving
force, with v ~ (F — F;)B. The critical exponent 8 de-
pends on the shape of the pinning force: 8 =1 for
the piecewise harmonic force and 8 = 3/2 for generic
smooth forces. Using a functional RG expansion in4 — €
dimensions, Narayan and Fisher [25] showed that the
discontinuous force captures a crucial intrinsic disconti-
nuity of the large-scale, low-frequency dynamics, giving
the general result 8 =1 — €/6 + O(€?), in accord with
numerical simulations for d = 2, 3 [3,26]. For simplicity
and to reflect the “‘jerkiness” of the motion in finite-
dimensional systems at low velocities, we use piecewise
harmonic pinning.

When 7 > 0, the nature of the depinning differs quali-
tatively from the 1 = 0 case in that hysteresis in the
dynamics can take place. This can be shown starting
from the 1 = 0 solutions v, _o(F), with v,_, a well-
defined function of F. The solution for general 7 can be
found by substituting the effective drive force G = F +
nv for F in the v,_y(F) relation and scaling velocity
down by 1 + 5. The linear transformation F = G — nv
then gives the general v(F) curve. One result is that
when 1 + 7! <maxg(dv,—o/dF), the v vs F curve is
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multivalued. Two cases can now be considered. The vis-
cous-elastic case K # 0 has quite different behavior from
the purely viscous case K = 0, due to the distinct self-
consistency conditions.

For the purely viscous case K = 0 (the 7 = 0 limit of
the model in Ref. [5]), periodic solutions of period
T(h, G) are found for a single particle moving in a pin-
ning force of strength % under the effective drive G. Self-
consistency implies that v = ((T(h, G)]™'),, giving

N AL

The behavior now depends on the shape of p(h). For
distributions that vanish below a value /., > 0, no mov-
ing solutions exist for F < h;,/2. In the extreme case
of uniform pinning, p(h) = 8(h — hy), the depinning is
hysteretic for all nonzero values of 7, with a jump from
v = 0 to finite v at F = hy/2. For the more general broad
distribution with nonvanishing support at 42 =0, no
pinned solution exists for F > 0: while the bulk of the
degrees of freedom are pinned at small F, weakly pinned
¢ can respond to small drives. Typical v vs F curves for
p(h) = e~" are shown in Fig. 2(a). The lines in Fig. 2(b)
represent the critical forces where there is a macroscopic
jump in the average velocity (dynamic hysteresis). For
n>mn. and F; > F > F| “fast” and “slow” sliding
states coexist. The critical point (7., F.) in Fig. 2(b) is
in the universality class of the liquid-gas transition (and
of the field-driven random field Ising model [12]). Near
the critical point the mean velocity has universal scaling,
V=V~ (77 - nc)1/6 ~ (F - Fc)'B>With Ve = U(Fc’ Uc),
and By = 1/2, 8y = 3. The point (7, F,) survives in
finite dimensions [12], with exponents distinct from their
mean-field values.

For finite long-time elasticity, i.e., when K # 0, the
behavior changes dramatically. The elastic forces or
particle conservation enforce a uniform time-averaged
velocity for all degrees of freedom. In this case the
long-time uniform-v solution to Eq. (3) is ¢(h, ¢, 1) =
vt + ¢(h, i, 1) with @(h, ¢, 1) of period 1/v in t. The
self-consistency condition is (¢ (¢, 1)),, = 0. The ex-
plicit solution can be obtained for the piecewise linear
pinning force. (In the mean-field limit the nature of the
phase diagram depends some on the shape of the pinning
potential.) There is now a pinned phase that is stable [27]
for F < Fy = (h*/[2(K + h)]),. One then solves

-1 h2 1
1+ 7, v <(K + h) eK+m/A+n)v] _ 1>h’ ®

to find the mean velocity in the sliding state (0 < 6F =
F — Fy), where (n,+ 1)"! =(h?/[(K + h)*]),. The
v-Fcurves and a phase diagram are shown in Figs. 2(c)
and 2(d) for p(h) = e~ ". There is now a tricritical point
at (g, F, = Fy). For n<mn,, a continuous depinning
transition at F; separates a pinned state from a sliding
state with unique velocity v ~ (1 + n )[(F — Fr)/(n. —

107002-3

05— 0.5 ——
E r ©
04

03
02

0.1

0
0 0.1 0.1 0.2
04 ——T——T— ‘ 0
i 1 [ ) F
03k Fn) . ] 03t T
R 1 Py T 1
021 — 02 F, E
L F, i L
0.1 (b) = 0.1 (@) —
ol 1L 1 ol L 1
0 20 40 60 80 0 10 20 30
n n

FIG. 2. Velocity curves and phase diagrams for the mean-
field slip model. Part (a) shows v vs F curves for the purely
viscous case and p(h) = e~ ", for two values of viscous cou-
pling 5. Part (b) shows the phase diagram from (a), with
curves indicating jumps in the adiabatic response (i.e.,
dv/dF — %) when the force F is increased from F =0
[F'(n)] and decreased from a sliding state [F*(n)]. The critical
point (1., F,.) = (9.61,0.278). Part (c) shows example v vs F
curves when there is elasticity, K = 1, for piecewise linear
pinning forces and p(h) = e¢™". The curves are again continu-
ous for 7 < m,, but have a depinning transition at Fp, with
critical behavior identical to the » = 0 case. When 1 > 7, the
depinning is abrupt and the v-F curves are hysteretic. Part (d)
summarizes the K = 1, p(h) = e " results in a phase diagram,
indicating depinning from an initial pinned state at F' = F
and repinning from a sliding state at a lower force F!(7). The
point (7., Fy) = (3.74,0.298) is a tricritical point.

1)), giving B8 =1 in MFT. In finite dimensions, this
transition is likely to remain in the same universality
class as the depinning of an elastic medium (7 = 0):
numerical studies and analysis by Schwarz and Fisher
[13] of a model with local viscouslike terms show that
there is no hysteresis for small slip coupling and that the
depinning transition exponents are the same as without
slip coupling. In our mean-field example, the linear re-
sponse diverges at 7., v(n = n.) ~ 1/In(F — Fy). For
n > 7, there is hysteresis with coexistence of stuck and
sliding states.

Relations to other models.—In the absence of viscous
coupling (n = 0), Eq. (1) reduces to the conventional
d|-dimensional phase-only model of driven CDWs.
When K = 0 and 7 is finite, the model describes a viscous
fluid in a disordered background [5].

The mean-field limit of the anisotropic slip model for
finite K maps onto a periodic-pinning version of the
infinite-range limit of the stress overshoot model studied
by Schwarz and Fisher [6,13]. The dynamics of crack
fronts in brittle materials can be dominated by local
inertial effects, in which the motion of a crack segment
creates a transient stress on other segments. In the
infinite-range limit the stress transfer yields a global
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coupling of strength M between the mean displacements
at two different times, analog to the effective force per
unit velocity 7 in our model. The behavior we conjecture
for finite dimensions is identical to that obtained by
Schwarz and Fisher.

The viscous model (i # 0) with finite K is also closely
related to a model of sliding CDWs that incorporates the
coupling of the CDW to normal carriers by adding a
global velocity coupling [9,10,28] to the conventional
Fukuyama-Lee-Rice model. The precise relationship is
obtained by considering a mean-field limit d; — oo with
fixed d). In this limit, each degree of freedom is coupled
equally by slip to all other layers, but elastically coupled
only to its nearest neighbors in the longitudinal direction.
The equation of motion is then

1+ n)eit = KZ((bW — ¢t + F + qu
"
+ ;zfiY(¢€i — ). (6)

Equation (6) is identical to the equation of motion of a
purely elastic CDW with friction 1 + 7 and an effective
driving force F + nv. One can then obtain the velocity-
force characteristics consistent with Ref. [10] simply by
translating the analytic results [25] for CDWs. Near
threshold, we obtain v ~ (F + nv — F7)B, with B =1 —
(4 — d)/6 + O[(4 — dy)*]. The transition is always hys-
teretic: the medium depins at F! = F; when the force is
ramped up and repins at a lower value, F!'=~ F; —
[(1/B) — 1][Bn/(1 + p)]/1=A when the force is
ramped down from the sliding state. This hysteresis for
all » > 0 appears to be a consequence of the global
nature of the coupling, in contrast with the results of
Schwarz and Fisher for local slip coupling [13].

One can include phase-slip couplings o> periodic in
¢. The anisotropic model can describe the driven dynam-
ics of intrinsically layered systems, such as vortex lattices
in cuprate materials. Hysteresis depends on the strength of
the correlations in the (weak-coupling) layered direction,
as seen in simulations [18]. An anisotropic CDW model
was studied in this context by Nattermann and Vinokur
[7]. These authors modeled the transverse slip as a non-
linear coupling that is periodic in the local CDW phase
differences; this allows for phase slips, i.e., the collapse of
the CDW amplitude between coherent regions [8].

Summary—We have proposed that the plastic flow of
extended systems in a disordered background can be
modeled using a general anisotropic approach that in-
cludes many specific physical systems as special cases.
We have discussed the behavior of this model in a mean-
field limit. When the degrees of freedom are allowed to
move at distinct velocities, a pinned phase is generally not
present, though there is hysteresis in the current-drive
relation. Even when fluidlike shear takes place, particle
conservation gives a sharp depinning transition in flow
that takes place along channels. Our future goals include
studying the model in finite dimensions and establishing
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the connection between the parameters of the model and
physical parameters of a given experiment.
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