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We introduce an event-based corpuscular simulation model that reproduces the wave mechanical
results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of
an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The
simulation comprises models that capture the essential features of the apparatuses used in the experiment,
including the single-photon detectors recording individual detector clicks. We demonstrate that
incorporating in the detector model, simple and minimalistic processes mimicking the memory and
threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns.
These multipath interference patterns are built up by individual particles taking one single path to the
detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard,
classical physics sense in that they are information carriers that exchange information with the
apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the
information exchanges of many particles with these apparatuses. The interference patterns are produced
without making reference to the solution of a wave equation and without introducing signalling or non-
local interactions between the particles or between different detection points on the detector screen.
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1. Introduction

In 1802, Young performed a double-slit experiment with
light in order to resolve the question whether light was
composed of particles, confirming Newton’s particle picture
of light, or rather consisted of waves.1) His experiment
showed that the light emerging from the slits produces
a fringe pattern on the screen that is characteristic for
interference, discrediting Newton’s corpuscular theory of
light.1) Hence, from the point of view of classical physics,
the particle and wave character of light did not seem to be
compatible. Moreover, the interpretation in terms of par-
ticles or waves of the observations in experiments with
light became even more complicated after conduction of
the Michelson–Morley experiment2) which provided evi-
dence that light waves do not need a medium (the ether) to
propagate through, in contrast to water and sound waves
which require media. However, explanation of the photo-
electric effect by Einstein in terms of photons3) is perhaps
the most direct and convincing evidence of the corpuscular
nature of light. Einstein’s explanation of the photoelectric
effect was the start of understanding the quantum nature of
light and influenced the development of the concept of
wave-particle duality in quantum theory.

In 1924, de Broglie introduced the idea that also matter,
not just light, can exhibit wave-like properties.4) This idea

has been confirmed in various double-slit experiments
with massive objects such as electrons,5–8) neutrons,9,10)

atoms11,12) and molecules such as C60 and C70,13,14) all
showing interference. In some of the double-slit experi-
ments6,7,15) the interference pattern is built up by recording
individual clicks of the detectors. Identifying the registration
of a detector click, the ‘‘event’’, with the arrival of a particle
and assuming that the time between successive clicks is
sufficiently long such that these particles do not interact,
it becomes a challenge to explain how the detection of
individual objects that do not interact with each other can
give rise to the interference patterns that are being observed.
According to Feynman, the observation that the interference
patterns are built up event-by-event is ‘‘impossible, abso-
lutely impossible to explain in any classical way and has in it
the heart of quantum mechanics’’.16)

Although wave-particle duality is a central concept of
quantum theory, in practice quantum theory only works with
wave functions to describe the total system under study. In
order to describe the single occurrences observed in various
experiments the process of wave function collapse has been
introduced. However, the precise mechanism of a wave
function collapse is not known.

Recently, various experiments have been performed that
measure individual events generated by microscopic objects.
Hence, it is of interest to study how the particle and wave
picture of these experiments are contradicting each other. It
is often said that wave properties like interference cannot be
realized by non-interacting particles which satisfy Einstein’s
criterion of local causality. In earlier work we have
presented an event-based corpuscular simulation model
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which demonstrates that such particles can indeed produce
interference patterns and applied it to a variety of single-
photon experiments like beam splitter and Mach–Zehnder
interferometer experiments, Wheeler’s delayed choice ex-
periments and many others.17–28) What these experiments
have in common is that the interference can be described
as two-path interference, that is the observed interference
pattern is the result of having only two possible paths for the
particles travelling between source and detector. In order to
simulate such experiments it is sufficient to use adaptive
models for the optical apparatuses and to use detectors that
simply count the number of detection events.17–28) In this
paper we extend the simulation model towards simulating
multipath interference patterns as observed in single-photon
two-beam interference and two-slit experiments, for exam-
ple. Detectors that are simply counting the detection events
cannot be used for this purpose. Therefore we introduce a
new simulation model for the single-photon detector that
takes into account the memory and threshold behavior of
such a detector. The model is a natural extension of the
earlier work mentioned and is fully compatible, that is
interchanging in our earlier work the simple counting
detector model with this more complex detector does not
change the conclusions. In this sense, the present detector
model adds a new, fully compatible, component to the
collection of event-by-event simulation algorithms.

Note that the event-based simulation model is not a
corpuscular model in the classical-physics sense. In our
model, particles are objects that carry information. As a
particle encounters a material device, it exchanges informa-
tion with this device. In our model, this information
exchange is the cause of the appearance of an interference
pattern. In other words, in our approach we construct a
mechanism which produces wave-like phenomena by local
variables only. To this end, we introduce independent
objects which carry information. These objects we call
‘‘particles’’. Each particle interacts with the material of the
device only and the effect of many of such interactions is to
build up a situation which causes the appearance of a first-
order interference pattern.

To head off possible misunderstandings, the present paper
is not concerned with an interpretation or an extension of
quantum theory nor does it affect the validity and ap-
plicability of quantum theory. Furthermore, the event-based
detector models that we introduce in this paper should not be
regarded as realistic models for say, a photomultiplier or a
photographic plate and the chemical process that renders the
image. Our aim is to show that, in the spirit of Occam’s
razor, these very simple event-based models can produce
interference patterns without making reference to the solu-
tion of a wave equation.

Although waves can be the physical cause of interference,
the key point of our work is that it is wrong to think that
waves are the only possible physical cause of interference:
In our approach, the clicks produced by non-interacting/
non-communicating detectors, caused by non-interacting/
non-communicating particles that arrive at single detectors
one-by-one, build up a pattern that is identical to the one that
is obtained by solving a wave equation. However, our event-
based simulation approach does not require knowledge
of the wave amplitudes obtained by first solving the

wave mechanical problem or requires the solution of the
Schrödinger equation. Interference patterns appear as a
result of an event-by-event simulation of classical, locally
causal, adaptive dynamical systems.

The paper is structured as follows. In §2, we introduce the
interference experiments that we simulate. In §3, we review
the main features of the photon detection process. Section 4
specifies the new detector models and the simulation
algorithm in full detail. A Mathematica implementation of
this algorithm for the case of the double-slit experiment can
be downloaded from the Wolfram Demonstration Project
web site.29) In §5, we compare the event-by-event simulation
results with the numerical results obtained from wave theory
for the two-beam interference experiments discussed in §2,
showing that our event-based, particle-like approach repro-
duces the results of quantum theory without making use of
concepts thereof. In §6, we propose a realizable experiment
to test our event-based models for interference. Our
conclusions are given in §7.

2. Two-Beam Interference

In this paper, we focus on interference experiments with
single-photons, leaving the case of massive particles for
further research. As a prototype problem, we consider two-
beam interference experiments with a Fresnel biprism.30) A
schematic diagram of such an experiment is shown in Fig. 1.
A pencil of light, emitted by the source S, is divided by
refraction into two pencils.30) Interference can be obtained in
the region where both pencils overlap, denoted by the grey
area in Fig. 1. As a Fresnel biprism consists of two equal
prisms with small refraction angle and as the angular
aperture of the pencils is small, we may neglect aberra-
tions.30) The system consisting of the source S and the
Fresnel biprism can then be replaced by a system with
two virtual sources S1 and S2

30) (see Fig. 1). Alternatively,
following Young30) we can let the light impinge on a screen
with two apertures and regard these apertures as the two
virtual sources S1 and S2 (see Figs. 2 and 3). Results of a
single-photon interference experiment with a Fresnel bi-
prism and a time-resolved interference experiment for the
system schematically depicted in Fig. 3 are reported in
refs. 15 and 31, respectively.

For all these simplified systems, a straightforward
application of Maxwell’s theory yields the intensity at the
detection screen. We consider a few representative cases for
which closed-form expressions can be obtained:

S

S1

S2

FBP

Fig. 1. Schematic diagram of an interference experiment with a Fresnel

biprism (FBP).30) S, S1, S2 denote the point source and its two virtual

images, respectively. The grey area is the region in which an interference

pattern can be observed.
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. The sources S1 and S2 are lines of length a, separated
by a center-to-center distance d (see Fig. 2). These
sources emit light according to a uniform current
distribution, that is

Jðx; yÞ ¼ �ðxÞ½�ða=2� jy� d=2jÞ
þ�ða=2� jyþ d=2jÞ�; ð1Þ

where �ð�Þ denotes the unit step function. In the
Fraunhofer regime, the light intensity at the detector on
a circular screen is given by30)

Ið�Þ ¼ A

sin
qa sin �

2

qa sin �

2

0
BBB@

1
CCCA

2

cos2 qd sin �

2
; ð2Þ

where A is a constant, q is the wave number, and �
denotes the angular position of the detector D on the
circular screen (see Fig. 2).

. The sources S1 and S2 form a line source with a current
distribution given by

Jðx; yÞ ¼ �ðxÞ
X
s¼�1

e�ðy�sd=2Þ
2=2�2

; ð3Þ

where � is the variance and d denotes the distance
between the centers of the two sources (see Fig. 3).
The intensity of the overlapping pencils at the detector
reads

IðyÞ ¼ B cosh
byd

�2
þ cos

ð1� bÞqyd
X

� �
� e�bðy

2þd2=4Þ=�2

; ð4Þ
where B is a constant, b ¼ q2�4=ðX2 þ q2�4Þ, and ðX; yÞ
are the coordinates of the detector D (see Fig. 3).
Closed-form expression eq. (4) was obtained by assum-
ing that d � X and � � X.

. The two sources S1 and S2 are circles with a radius a

and their centers are separated by a distance d. The
current distribution is given by

Jðx; y; zÞ ¼ �ðxÞ½�ða2=4� ðy� d=2Þ2 � z2Þ
þ�ða2=4� ðyþ d=2Þ2 � z2Þ�: ð5Þ

In the Fraunhofer regime, the light intensity at a
detector placed on a sphere is given by30)

Ið�Þ ¼ C
2J1ðqa sin �Þ

qa sin �

� �2

cos2 qd sin �

2
; ð6Þ

where C is a constant, � denotes the zenith of the
detector D on the spherical detection screen and J1ð�Þ is
the Bessel function of the first kind of order one.

From eqs. (2), (4), and (6), it directly follows that the
intensity distribution on the detection screen, displays
fringes that are characteristic for interference.

3. Event-by-Event Simulation and Detector Model

Imagine that individual particles build up the interference
pattern one by one and exclude the possibility that there is
direct communication between the particles (even if one
particle has arrived at the detector while another particle is at
the source or at a detector). If we then simply look at Fig. 2
or 3, we arrive at the logically unescapable conclusion that
the interference pattern can only be due to the internal
operation of the detector: There is nothing else that can
cause the interference pattern to appear.

Obviously a simple, passive detector model that only
counts the number of particles fails to reproduce the
interference patterns of two-beam interference experiments
in which there are sources and detectors only, as in Figs. 2
and 3. Before we introduce new event-based models for the
detector, it is expedient to review the conventional theory of
the photon detection process.

In its simplest form, a light detector consists of a material
that can be ionized by light. The electric charges that result
from the ionization process are then amplified, chemically in
the case of a photographic plate or electronically in the case
of photo diodes or photomultipliers. In the wave-mechanical
picture, the interaction between the incident electric field
E and the material takes the form P � E, where P is
the polarization vector of the material.30) Treating this
interaction in first-order perturbation theory, the detection
probability reads PdetectionðtÞ ¼

R t
0

R t
0
hhETðt0Þ �Kðt0 � t00Þ�

Eðt00Þii dt0 dt00 where Kðt0 � t00Þ is a memory kernel that is
characteristic for the material only and hh�ii denotes the
average with respect to the initial state of the electric field.32)

Both the constitutive equation30) Pð!Þ ¼ �ð!ÞEð!Þ as well
as the expression for PdetectionðtÞ show that the detection
process involves some kind of memory. Furthermore, very
sensitive photon detectors such as photomultipliers and
avalanche diodes are trigger devices, meaning that the

x

S1

D

X

y

S2

(0, d/2)

(0, -d/2)

DETECTORSOURCE

(0,0)

θ

β

Fig. 2. Schematic diagram of a simplified double-slit experiment with two

sources S1 and S2 of width a, separated by a center-to-center distance d,

emitting light according to a uniform current distribution [see eq. (1)] and

with a uniform angular distribution, � denoting the angle. The light is

recorded by detectors D positioned on a semi-circle with radius X. The

angular position of a detector is denoted by �.

x

S1

D

X

y

(0,0)

S2

(0, d/2)

(0, -d/2)
DETECTORSOURCE

β

Fig. 3. Schematic diagram of a two-beam interference experiment with

two line sources S1 and S2 having a spatial Gaussian profile [see eq. (3)],

emitting light according to a uniform angular distribution, � denoting the

angle. The sources are separated by a center-to-center distance d. The

light is detected by detectors D positioned at ðX; yÞ.
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recorded signal depends on an intrinsic threshold. Concep-
tually, the chemical process that renders the image encoded
in the photographic material plays a similar role.

From these general considerations, it is clear that a
minimal model for the detector should be able to account for
the memory and the threshold behavior of the detectors. An
event-based model for the detector cannot be ‘‘derived’’ from
quantum theory, simply because quantum theory has nothing
to say about individual events.33) Therefore, from the
perspective of quantum theory, any model for the detector
that operates on the level of single events must necessarily
appear as ad hoc. In contrast, from the viewpoint of a
contextual description, the introduction of such a model is a
necessity.33)

4. Simulation Model

In our simulation model, every essential component of
the laboratory experiment such as the source, the Fresnel
biprism, and detector array has a counterpart in the
algorithm. The data is analyzed by counting detection
events, just as in the laboratory experiment.15) The simu-
lation model is solely based on experimental facts.

The simulation can be viewed as a message-processing
and message-passing process routing messengers through a
network of units that processes messages. The processing
units play the role of the components of the laboratory
experiment and the network represents the complete exper-
imental set-up. We now specify the operation of the basic
components of the simulation model in full detail. Other
components that are specific to a particular interference
experiment are described together with the presentation of
the simulation results.

4.1 Messenger
In our simulation approach, we view each photon as a

messenger carrying a message. Each messenger has its
own internal clock, the hand of which rotates with frequency
f . As the messenger travels from one position in space to
another, the clock encodes the time-of-flight t modulo the
period 1= f . The message, the position of the clock’s hand,
is most conveniently represented by a two-dimensional unit
vector ek ¼ ðe0;k; e1;kÞ ¼ ðcos �k; sin�kÞ, where the subscript
k > 0 labels the successive messages, �k ¼ 2� ftk, and tk is
the time-of-flight of the k-th messenger. The messenger
travels with a speed c=n where c denotes the speed of light in
vacuum and n is the refractive index of the medium in which
the messenger moves.

4.2 Source
In a simulation model in which the photons are viewed as

messengers, the single-photon source is trivially realized by
creating a messenger and waiting until its message has been
processed by the detector before creating the next messen-
ger. This ensures that there can be no direct information
exchange between the messengers, even if one particle
has arrived at the detector while another particle is at the
source or at a detector, implying that our simulation model
(trivially) satisfies Einstein’s criterion of local causality.

For the double-slit, two-beam interference, and circular
slits simulations, messengers leave the source at positions
generated randomly according to the current distributions

eqs. (1), (3), and (5), respectively. The distribution of the
angle � is chosen to be uniform. When messenger k is
created, its internal clock time tk is set to zero.

4.3 Detector
A single photon detector, such as a photographic plate,

consists of many identical detection units each having a
predefined spatial window in which they can detect photons.
Because these small detection units are photon detectors
themselves we also name them detectors in what follows.
Here we construct a processing unit that acts as a detector
for individual messages. A schematic diagram of the unit is
shown in Fig. 4. The first stage consists of a deterministic
learning machine (DLM) that receives on its input channel
the kth message represented by the two-dimensional vector
ek ¼ ðcos�k; sin�kÞ. In its simplest form the DLM contains a
single two-dimensional internal vector with Euclidean norm
less or equal than one. We write pk ¼ ð p0;k; p1;kÞ to denote
the value of this vector after the kth message has been
received. Upon receipt of the kth message the internal vector
is updated according to the rule

pk ¼ 	pk�1 þ ð1� 	Þek; ð7Þ

where 0 < 	 < 1 and k > 0. Update rule eq. (7) clearly
indicates that the first stage learns from the incoming
messages in a deterministic way and therefore it is given the
name deterministic learning machine. Obviously, if 	 6¼ 0,
a machine that operates according to the update rule eq. (7)
has memory.

The second stage of the detector (see Fig. 4) uses the
information stored in the internal vector to decide whether
or not to generate a click (threshold behavior). As a highly
simplified model for the bistable character of the real photo-
detector or photographic plate, we let the machine generate a
binary output signal Sk using the intrinsic threshold function

Sk ¼ �ðp2
k � rkÞ; ð8Þ

where �ð�Þ is the unit step function and 0 	 rk < 1 is a
uniform pseudo-random number. Note that in contrast to
experiment, in a simulation, we could register both the Sk ¼ 0

and Sk ¼ 1 events such that the number of input messages
equals the sum of the Sk ¼ 0 and Sk ¼ 1 detection events.
Since in experiment it cannot be known whether a photon has
gone undetected, we discard the information about the Sk ¼ 0

detection events in our future analysis.
The total detector count is defined as

N ¼
Xk
j¼1

Sj; ð9Þ

0

1

e

e
e

DLM

0

1

p

p

+ (1– )eγγp p 0 < r < 1

2r < p S

Pseudo-random
detector clicks

Fig. 4. Diagram of the event-based detector model defined by eqs. (7) and

(8). The dashed line indicates the data flow within the processing unit.
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where k is the number of messages received. Thus, N counts
the number of one’s generated by the machine. As noted
before a detector screen is just a collection of identical
detectors and is modeled as such. Each detector has a
predefined spatial window within which it accepts messages.

In Appendix A we prove that as 	 ! 1�, the internal
vector pk converges to the average of the messages
e1; . . . ; ek. In general, the parameter 	 controls the precision
with which the machine defined by eq. (7) learns the average
of the sequence of messages e1; e2; . . . and also controls the
pace at which new messages affect the internal state of the
DLM (memory effect).17) In Appendix B we show how to
modify the update rule eq. (7) such that the transient regime
of the detector becomes shorter. The transient behavior of
the simplest and the slightly more complicated detector
models may be accessible to real experiments, as explained
in §6. In Appendix B, we also give an alternative for eq. (8)
that does not make use of pseudo-random numbers.

Before we proceed we make a few notes on the memory
and threshold behavior of our detector simulation models.
Although the word memory may give the impression that
the detector keeps track of all the photons that pass, all the
event-based detector models introduced in this paper have
barely enough memory to store the equivalent of one
message. Thus, these models derive their power, not
from storing a lot of data, but from the way they process
successive messages. Most importantly, the DLMs do not
need to keep track of the number k of messages that they
receive, a number that we cannot assume to be known
because in real experiments we can only count the clicks of
the detector, not the photons that were not detected. As
shown in Appendix C, the role of the local memory of the
detector is similar to that of the dielectric function in
Maxwell’s theory. Our detector models do not incorporate a
memory fade-out as a function of time. Although this could
be an essential feature in time frames in which the detectors
do not receive photons, we do not consider it to be of
importance for our present study.

We also want to emphasize that the presence of a
threshold does not cause our detector model to operate with
less than 100% efficiency. In general, the detection effi-
ciency is defined as the overall probability of registering
a count if a photon arrives at the detector.34) Using this
definition, our event-based detector model simulates an ideal
single-photon detector that has 100% detection efficiency.
This can easily be demonstrated by performing the simu-
lation of an experiment (which is very different from a
double-slit experiment) that measures the detection efficien-
cy.34) In such an experiment a point source emitting single
photons (messengers) is placed far away from a single
detector. As all photons that reach the detector have the
same time-of-flight (to very good approximation), all the
messengers that arrive at this detector will carry the same
message. As a result, the internal vector rapidly converges to
one, so that the detector clicks every time a photon arrives.
Thus, the detection efficiency, as defined for real detectors,
of our detector model is very close to 100%. Although the
detection efficiency of the detector model itself is very close
to 100%, the ratio of detected to emitted photons is much
less than one. Note however that, in general, as is well
known, a photon detector + electronics is an open system

(powered by external electrical sources etc.), hence photon-
energy conservation within the detector-photon system is not
an issue.

4.4 Discussion
In our approach, interference appears as a result of

processing individual events, but definitely not because
we have introduced ‘‘wave-like’’ ingredients in a sneaky
manner. In our corpuscular model, each particle carries its
own clock, that is, it carries its own local oscillator.
This oscillator only serves to mimic the frequency of the
individual particle (photon). The particle hits the detector,
the detector ‘‘observes’’ the state of the oscillator that is
attached to this particular particle and determines its time-of-
flight. Note that the idea of introducing the time-of-flight
does not mean that we obtain interference by summing wave
functions ake

�i!tk where tk denotes the time-of-flight of the
kth particle.

There is no communication/interaction between the
detectors that make up the detection screen, hence there is
no wave equation (i.e. no partial differential equation) that
enforces a relation between the internal variables of these
detectors. Likewise, the oscillator that is carried by a particle
never interacts with an oscillator of another particle, hence
the motion of these two oscillators is also not governed by a
wave equation. Naively, one might imagine the oscillators
tracing out a wavy pattern in space as they travel from the
source to the detector screen. However, in our model there is
no relation between the times at which the particles leave the
source, hence it is impossible to characterize all these traces
by a field that depends on one set of space-time coordinates,
as required for a wave theory.

5. Simulation Results

First, we demonstrate that our event-by-event simulation
model reproduces the wave mechanical results eq. (2) of the
double-slit experiment. Second, we simulate a two-beam
interference experiment and show that the simulation data
agree with eq. (4). Third, we validate the simulation
approach by reproducing the interference patterns for two
circular sources [see eq. (6)]. Finally, we present the results
for the simulation of the single-photon interference experi-
ment with a Fresnel biprism15) (see Fig. 1). The results
presented in this section have all been obtained using the
detector model described in §4. Simulation data produced by
the detector models described in Appendix B are given in
§6.

5.1 Double-slit experiment
As a first example, we consider the two-slit experiment

with sources that are slits of width a ¼ 
 (
 ¼ 670 nm in
all our simulations), separated by a center-to-center distance
d ¼ 5
 (see Fig. 2). In Fig. 5(a), we present the simulation
results for a source-detector distance X ¼ 0:05 mm. When a
messenger (photon) travels from the source at ð0; yÞ to the
circular detector screen with radius X, it updates its own
time-of-flight, or equivalently its angle �. This time-of-flight
is calculated according to geometrical optics.30) More
specifically, a messenger leaving the source at ð0; yÞ under
an angle � (see Fig. 2) will hit the detector screen at a
position determined by the angle � given by
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sin � ¼ z cos2 �þ sin �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 cos2 �

p
; ð10Þ

where z ¼ y=X and jzj < 1. The distance traveled is then
given by

s ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z sin �þ z2

p
; ð11Þ

and hence the message is determined by the angle � ¼
2� fs=c where c is the speed of light. As the messenger hits a
detector, the detector updates its internal vector and decides
whether to output a zero or a one.

This process is repeated many times. The initial y-
coordinate of the messenger is chosen randomly from a
uniform distribution on the interval ½�d=2� a=2;�d=2þ
a=2� [ ½þd=2� a=2;þd=2þ a=2�. The angle � is a uniform
pseudo-random number between ��=2 and �=2.

The markers in Fig. 5(a) show the event-by-event simu-
lation results produced by the detector model described in
§4 with 	 ¼ 0:999. We used a set of thousand detectors
positioned equidistantly in the interval ½�57
; 57
�, each of
them receiving on average by 6000 photons. The number of
clicks generated by the detectors, that is the number of so-
called detected photons, is approximately 16� 105. Hence,

the ratio of detected to emitted photons is of the order 0.25, a
fairly large number compared to those achieved in labo-
ratory experiments with single-photons (see §5.4). The result
of wave theory, as given by the closed-form expression
eq. (2), is represented by the dashed line. Without using any
knowledge about the solution of a wave equation, the event-
based simulation (markers) reproduces the results of wave
theory.

According to our mathematical analysis of the perform-
ance of the machines (see Appendix A), accurate results
(relative to the predictions of quantum theory) are to be
expected for 	 close to one only. Taking for instance 	 ¼
0:99 does not change the qualitative features although it
changes the number of counts by small amounts (data not
shown).

An interactive Mathematica program of the event-based
double-slit simulation which allows the user to change the
model parameters and to verify that the simulation repro-
duces the results of wave theory may be downloaded from
the Wolfram Demonstration Project web site.29)

5.2 Two-beam interference experiment
As a second example we consider the two-beam interfer-

ence experiment depicted in Fig. 3. We assume that the
messengers leave either source S1 or S2 from a position y

that is distributed according to a Gaussian distribution with
variance � and mean þd=2 or �d=2, respectively. Also
in this case, the time-of-flight is calculated according to
geometrical optics.30) A messenger leaving the source at
ð0; yÞ under an angle � (see Fig. 3) will hit the detector
screen at a position ðX; y0Þ

y0 ¼ X tan�þ y; ð12Þ

the distance traveled is given by s ¼ X sec � and the message
is determined by the angle � ¼ 2� fs=c where c is the speed
of light.

The simulation results for a source-detector distance
X ¼ 0:1 mm, for 	 ¼ 0:999 are shown in Fig. 5(b). The
dashed line is the result of wave theory, see closed form
expression eq. (4). Also in this case, the agreement between
wave theory and the event-by-event simulation is extremely
good.

5.3 Double-slit experiment with circular sources
As a third example, we consider the double-slit experi-

ment with circular sources, a straightforward extension of
the two-dimensional double-slit system to three dimensions.
As shown in Fig. 5(c), there is excellent agreement between
the event-by-event simulation and the analytical expression
eq. (6).

5.4 Experiment with a Fresnel biprism
Finally, we consider the single-photon experiment

with a Fresnel biprism.15) Figure 6 shows the schematic
representation of the single-photon interference experiment
that we simulate. For simplicity, we assume that the
source S is located in the Fresnel biprism. Then, the
results do not depend on the dimensions of the Fresnel
biprism. Simulations with a Fresnel biprism of finite size
yield results that differ quantitatively only (results not
shown).
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Fig. 5. Detector counts as a function of the angular (spatial) detector

position � (y) as obtained from event-by-event simulations of the

interference experiment shown in Fig. 2 (Fig. 3). The circles denote the

event-based simulation results produced by the detector model defined in

§4. The dashed lines are the results of wave theory [see eqs. (2), (4), and

(6)]. (a) The sources are slits of width a ¼ 
 (
 ¼ 670 nm in all our

simulations), separated by a distance d ¼ 5
 and the source-detector

distance X ¼ 0:05 mm (see Fig. 2). The sources emit particles according

to the current distribution eq. (1). An interactive program for the double-

slit simulation can be downloaded from the Wolfram Demonstration

Project web site;29) (b) The sources S1 and S2, separated by a distance

d ¼ 8
 , emit particles according to a Gaussian current distribution eq. (3)

with variance � ¼ 
 and mean d=2 and �d=2, respectively (see Fig. 3).

The source-detector distance X ¼ 0:1 mm; (c) The two circular sources S1

and S2 of radius a ¼ 
 with centers separated by a distance d ¼ 5
 emit

particles according to the current distribution eq. (5). The distance

between the center of the two-source system and the spherical detection

screen is X ¼ 0:1 mm.
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Messengers are created at positions drawn randomly from
the distribution

Jðx; yÞ ¼ �ðxÞe�y
2=2�2

; ð13Þ

As in all other cases, the time-of-flight of the messenger is
calculated according to the rules of geometric optics.30) A
messenger starting at ð0; yÞ with angle � (see Fig. 6) leaves
the Fresnel biprism at

x� ¼
X0 � y tan �=2

1� tan � tan �=2
;

y� ¼
y0 þ X0 tan �

1� tan � tan �=2
; ð14Þ

where the sign has to be chosen such that x� 	 X0 and
�y� � 0, that is such that the path of the messenger crosses
the Fresnel biprism boundary. Using the fact that the
tangential component of the velocity is continuous across the
Fresnel biprism boundary,30) we have

�0� ¼
��
2
þ arcsin n sin ��

�

2

� �� �
; ð15Þ

and we find that the messenger hits the screen at D ¼
½X; ðX � x�Þ tan�0� þ y�� and that the total time traveled is
given by

t ¼ n
x�

c
sec �þ

X � x�

c
sec �0�: ð16Þ

In the simulation, the angle of incidence � of the photons
is selected randomly from the interval ½��=2; �=2�, where
� denotes the summit angle of the Fresnel biprism. A
collection of representative simulation results for 	 ¼ 0:999

is presented in Fig. 7. The dashed lines are the numerical
results obtained from wave theory by Monte Carlo sampling.
Again, we find that there is excellent quantitative agree-
ment between the event-by-event simulation data and
wave theory. Furthermore, the simulation data presented in
Fig. 7 is qualitatively very similar to the results reported in
ref. 15 [compare with Fig. 4(d) and Fig. 5(a)(b) of ref. 15].
Figure 4(c) and 4(d) of ref. 15 are made of approximately
20000 photocounts on the CCD camera, while the number of
photodetections on the avalanche photodiodes in absence of
the CCD camera would be 40� 106 during the exposure
time of 2000 s. Hence the ratio of detected to emitted

photons is of the order of 0.0005. This ratio is much smaller
than what we observe in our idealized simulation experi-
ment. Namely, each of the thousand detectors making up the
detection area is hit on average by sixty thousand photons
and the number of clicks generated by the detectors is
approximately 16� 105. Hence, the ratio of detected to
emitted photons is of the order of 0.026, much larger than
the 0.0005 observed in experiment.15)

6. Experimental Tests: A Proposal

The simulation models that we propose in this paper make
specific predictions that may be tested by carefully designed,
time-resolved single-photon interference experiments. How-
ever, not all experiments one can think off are as easy to
realize. One of the simplest proposals to test the simulation
models would be to consider a large number (M) of identical
and independent two-beam (or double-slit) interference
experiments in which only one photon is detected at each
of the M detection screens. According to quantum theory,
summing up the single spots of the M detection screens gives
the same interference pattern as if one would conduct
one two-beam interference experiment with M photons
being detected on the same detection screen (all under the
assumption that every time a photon is emitted and that all
emitted photons are detected). For this experiment, the
simulation models that we have introduced do not yield an
interference pattern, as is clear from their description. Thus,
at least in principle, this experiment should be able to refute

x

S D

X

y

X ′

DETECTORSOURCE

(0,0)

αβ

Fig. 6. Schematic diagram of the simulation setup of a single-photon

experiment with a Fresnel biprism. The apex of the Fresnel biprism with

summit angle � is positioned at ðX0; 0Þ. In the simulation, a line source

emits particles from positions drawn from the current distribution eq. (13)

with random angles � chosen uniformly from the interval ½��=2; �=2�.
The detectors D positioned at ðX; yÞ count the photons.
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Fig. 7. Detector counts as a function of the detector position y of the

detector array positioned at X for a single-photon interference experiment

with a Fresnel biprism (see Fig. 6). The Fresnel biprism has an index of

refraction n ¼ 1:5631 and a summit angle � ¼ 1
. Its apex is positioned

at ðX0; 0Þ with X0 ¼ 45 mm. The source emits particles according to a

Gaussian current distribution with variance � ¼ 0:531 mm and wave-

length 
 ¼ 670 nm.15) The circles denote the event-based simulation

results. The dashed lines denote the numerical results as obtained from

wave theory. (a) X � X0 ¼ 7 mm; (b) X � X0 ¼ 15 mm; (c) X � X0 ¼ 55

mm. Thousand detectors where used to record the individual events.
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the corpuscular model. Note that in the absence of any
experimental evidence and bearing in mind that quantum
theory has nothing to say about individual events,33) it is
only a hypothesis that the experiment with finite M will
yield results that agree with quantum theory. Whether this
hypothesis is actually true remains to be demonstrated by an
experiment. Unfortunately, in practice, this experiment may
be difficult to realize, the central question being how large M

should be before one observes a pattern that resembles the
one predicted by wave theory. A rough estimate, based on
experiments with electrons35) suggests that M > 50000, a
number which makes this proposal very hard to realize in
practice. Therefore, we propose another experiment that may
be realizable with present-day technology.

As explained earlier, if our simulation models operate in
the stationary-state regime, they reproduce the wave theo-
retical results. Therefore, to falsify our event-based models
the single-photon experiment should be designed such that it
is sensitive to the transient behavior of the whole setup. In
other words, the experiment should operate on a time scale
that is sufficiently short to prevent the DLM in our detector
models to reach the stationary state. For a fair comparison
between experiment and our simulation models, it is
essential that the experimenter does not discard data that
is recorded during the ‘‘calibration’’ or ‘‘warm-up’’ stage
because this data may contain valuable information about
the transient behavior of the experimental setup.

In this section, we use our simulation approach to make
predictions of laboratory experiments that may be realizable.
Consider again the double-slit experiment depicted in Fig. 2
but instead of having many detectors at different angles �,
we use only one detector placed on a goniometer. The idea
is to keep the total exposure time constant while the detector
is swept back-and-forth over (part of) the half-circle (see
Fig. 2). In our simulation models, the recorded interference
pattern will then depend on the angular velocity of the
detector. For velocities that are sufficiently small to allow
the DLM to reach the stationary state, the interference
pattern obtained agrees with the one predicted by wave
theory. On the other hand, if the detector position changes
rapidly, the DLM may not receive enough events to
accurately reproduce the wave mechanical result. Therefore,
if we keep the total exposure time constant and perform a set
of experiments for several choices of the sweep velocity, our
simulation models predict that the interference patterns will
change and that these changes reflect the internal dynamics
of the detector model used.

The procedure that we propose is the following. First, we
fix the angle �� by which the detector position will be moved.
For simplicity, we assume that the aperture of the detector is
equal to ��. Then, we fix the total number of events Ntotal

which, on average, will arrive within each arc of angle
��. Finally, we select the number of times Nsweeps that the
detector will be swept back-and-forth over the half circle.

In the simulation, the internal variables of the detector
models are initialized once. The simulation results presented
in this section have been obtained using �� ¼ 1
, Ntotal ¼
106, Nsweeps ¼ 1; 25; 50; 100, 	 ¼ 0:999, and for the modi-
fied detector models introduced in Appendix B, � ¼ 0:9,
w0 ¼ 0:9, and  ¼ 0:99. In all figures, the theoretical result
eq. (2) is rescaled to fit to the maximum of the simulation

data at the smallest sweep velocity and, in the case of IIIa
and IIIb, also shifted to account for the non-zero bias.

As explained in Appendix B, the simple detector model
introduced in §4 with the DLM defined by eq. (7) may
require a significant amount (order of thousands) of input
events to reach the stationary state. Hence, if we move the
detector before the DLM reaches its stationary state, this
detector model may not produce results that agree with wave
theory. This expectation is confirmed by the results shown
in Figs. 8(Ia) and 8(Ib). If the detector moves slowly
(Nsweeps ¼ 1), the event-based simulation data are in concert
with wave theory, as is clear from the comparison of the
stars and the solid lines in Figs. 8(Ia) and 8(Ib). From
Figs. 8(Ia) and 8(Ib) it is also clear that increasing the
number of sweeps to Nsweep ¼ 25 (recall that the total
amount of events corresponding to the total exposure time in
the experiment is fixed) leads to a reduction of the visibility
of the fringes. If we increase the number of sweeps to
Nsweep ¼ 50, the detector model fails qualitatively.

Thus, an experiment that uses a moving detector might be
able to rule out event-based models Ia and Ib as candidate
descriptions of the single-photon interferences. However,
this does not yet imply that our approach as such should be
abandoned: It may be that the detector model is too simple.
Therefore, it is of interest to explore to what extent the
results depend on the particular algorithms used.

It is not difficult to modify the DLM defined by eq. (7)
such that the convergence to the stationary state is much
faster or that the response to changes in the input data is
faster. In Appendix B, we give the details of two of such
variants.

DLM II is constructed such that its stationary state
behavior is the same as that of the simple DLM [eq. (7)],
hence the detector model using this DLM reproduces the
results of wave theory if we employ an array of detectors or
move the single detector very slowly. From Figs. 8(IIa) and
8(IIb), we may conclude that this model is an improvement
over the simple model in that it still shows interference
fringes at a sweeping rate of Nsweep ¼ 50. For Nsweeps ¼ 100,
the detector receives approximately Ntotal=ð180Nsweeps=��Þ 
55 events before it moves to the next position. With this
small amount of input events, DLM II does not reach the
stationary state (see also Fig. B·1).

DLM III is a little different from DLM II: It is sensitive to
differences between the internal state and the input message.
As Figs. 8(IIIa) and 8(IIIb) show, these detector models
produce output signals that are insensitive to the speed at
which the detector moves but this comes at the price of a
nonzero bias which is, within statistical fluctuations, in-
dependent of the detector position or velocity. Subtracting
this bias, all the data fit the theoretical curve very well.

Summarizing: For experiments that use detectors that
have fixed positions, our event-based models for the detector
yield results that cannot be distinguished from those of wave
theory. However, our simulation models for single-photon
two-beam interference show features that may be tested
experimentally by measuring the intensity as a function of
the speed of a moving detector. We have proposed and
analyzed a realizable, time-resolved experiment that directly
probes the dynamics of our detector models and predicted
the outcome of such future experiments.
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7. Conclusion

We have demonstrated that it is possible to give a
corpuscular description for single-photon interference ex-
periments with a double-slit, two beams, and with a Fresnel
biprism. Our event-by-event simulation model

. does not require any knowledge about the solution of a
wave equation,

. reproduces the results from wave theory,

. satisfies Einstein’s criterion of local causality,

. provides a simple, logically consistent, particle-based
description of interference.

We do not exclude that there are other event-by-event
algorithms that reproduce the interference patterns of wave
theory. For instance, in the case of the single-electron
experiment with the biprism,35) it may suffice to have an
adaptive machine handle the electron–biprism interaction
without having adaptive machines modeling the detectors.
We leave this topic for future research.

We hope that our simulation results will stimulate the
design of new time-resolved single-photon experiments to

test our corpuscular model for interference. In §6, we
proposed such an experiment and also predicted the outcome
if our simulation model captures the essence of the event-
based processes. Note however that the models we have
employed are not unique, as shown explicitly in §4. This
leaves some freedom to adapt the simulation models to the
actual experiments that will be performed.

Finally, it may be of interest to mention that our approach
opens a route for incorporating interference phenomena
into ray-tracing software. In our simulation method, each
messenger simply follows one of the rays through the
medium, updating the message (corresponding to the phase
information) as it travels along. Therefore, for applications
where the solution of the Maxwell equations is prohibitive,
the combination of our technique and ray tracing may be a
viable alternative.
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Fig. 8. (Color online) Detector counts as a function of the angular detector position � for the interference experiment shown in Fig. 2 which employs only

one single-photon detector that is swept over the half circle with a fixed angular velocity. The results are obtained from event-by-event simulations with

six different detector models. The line sources have a width a ¼ 
 are separated by a center-to-center distance d ¼ 3
 , and X ¼ 0:05 mm (see Fig. 2).

The labels in the figures indicate the detector model (algorithms) used. Roman numbers refer to the DLM update rule. The letters a and b refer to the

pseudo-random and deterministic generation of clicks, respectively. Ia: eqs. (7) and (8); Ib: eqs. (7) and (B·3); IIa: eqs. (B·1) and (8); IIb: eqs. (B·1) and

(B·3); IIIa: eqs. (B·2) and (8); IIIb: eqs. (B·2) and (B·3). Stars: Nsweeps ¼ 1; Crosses: Nsweeps ¼ 25; Triangles: Nsweeps ¼ 50; Diamonds: Nsweeps ¼ 100;

Solid lines: Wave theory [see eq. (2)]. Other lines are guide to the eye only.
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Appendix A

We demonstrate that as 	 ! 1� the internal vector pk in
eq. (7) converges to the average of the messages e1; e2; . . . .

Let kxk denote the Euclidean norm of the vector x. Then,
as 0 < 	 < 1, kekk ¼ 1 for all k > 0, and kp0k ¼ 1 it
follows immediately from eq. (C·1) that kpkk 	 1 for all
k > 0, hence limk!1 pk exists. To determine p ¼
limk!1 pk, we have to make assumptions about the proper-
ties of the sequence fe1; e2; . . .g. For instance, if the sequence
fe1; e2; . . .g is generated by a stochastic process with mean
hejþ1i ¼ e for j ¼ 0; . . . ; k � 1, then it is easy to show that
p ¼ e. Thus, in this case, the machine defined by the rule
eq. (7) learns the average e by updating its internal vector
for each message it receives.

In practice, only finite sequences fe1; e2; . . . ; eKg are
available. In this case, we can estimate the limiting value
by assuming that the sequence repeats itself, an assumption
that is common in Fourier analysis and signal processing in
general.36) From eq. (C·1), we have

pnK ¼ 	Kpðn�1ÞK þ ð1� 	Þ
XnK�1

j¼ðn�1ÞK
	nK� j�1ejþ1

¼ 	Kpðn�1ÞK þ ð1� 	Þ
XK�1

j¼0

	K� j�1ejþ1þðn�1ÞK

¼ 	Kpðn�1ÞK þ ð1� 	ÞfK ; ðA:1Þ
where

fK ¼
XK�1

j¼0

	K� j�1ejþ1; ðA:2Þ

and n > 0. From eq. (A·1) we find

pnK ¼ 	nKp0 þ ð1� 	Þ
1� 	nK

1� 	K
fK ; ðA:3Þ

and hence

lim
n!1

pnK ¼
1� 	
1� 	K

XK�1

j¼0

	K� j�1ejþ1; ðA:4Þ

such that

lim
	!1�

lim
n!1

pnK ¼
1

K

XK�1

j¼0

ejþ1: ðA:5Þ

From eq. (A·5), we conclude that as 	 ! 1� the internal
vector pk converges to the average of the messages
e1; . . . ; eK . In general, the parameter 	 controls the precision
with which the machine defined by eq. (7) learns the average
of a sequence of messages and also controls the pace at
which new messages affect the internal state of the learning
machine.17)

Appendix B

Without performing any simulation, we can already see
from eq. (7) that the simple machine may not perform very
well in some cases. Suppose that p0 ¼ 0 and that ek ¼ e for
all k. Then, from eq. (7) it follows that pk ¼ ð1� 	kÞe such
that kpk � ek ¼ 	k. Although the latter equation shows that

the convergence of pk to the input vector e is exponentially
fast, for 	 very close to one, in practice, it may take quite a
number of events to reach the stationary state.

In this Appendix, we describe two modifications of the
algorithm eq. (7) of the first stage (DLM) and one alternative
for the algorithm eq. (8) of the second stage. The modifi-
cations of the first stage reduce the amount of events
required for the detector model to reach the stationary
regime. The alternative for the second stage eliminates the
need for a pseudo-random number generator.

It is not difficult to modify the machine such that its
asymptotic behavior remains the same while improving,
significantly, the speed with which it learns from the input
ek. A simple, but by no means unique, modification is to add
one memory element to store one variable, denoted by wk,
which keeps track of the differences between pk and pk�1.
For k > 0, these variables are updated according to the rule

�k�1 ¼ 	ð1� wk�1Þ;
pk ¼ �k�1pk�1 þ ð1� �k�1Þek;

wk ¼ �wk�1 þ ð1� �Þ
kpk � pk�1k

2
; ðB:1Þ

where 0 < � < 1 is another control parameter and 0 	
w0 	 1. Although the variable �k is redundant, we wrote
eq. (B·1) such that it is obvious that it is an extension of
eq. (7). In essence, instead of keeping 	 fixed in the rule to
update pk [see eq. (7)], in eq. (B·1), the value of �k in the
rule to update pk is made variable. This flexibility is then
exploited through the first and last rule in eq. (B·1). The last
rule defines a machine that learns the distance between pk

and pk�1, the learning speed being controlled by �. The basic
idea is that if this distance is large (say close to but less than
2), the last rule will drive wk to one such that �k is small and
the change of pk may be large. In the opposite situation, the
last rule will force wk to zero and pk will change by small
amounts (assuming 	 is close to but less than one). As
�k 	 	, the asymptotic behavior of the machine defined by
the rule eq. (B·1) is easily shown to be the same as that of
the simple version in which we keep �k ¼ 	. Thus, although
equations that govern the dynamics of the machine eq. (B·1)
are nonlinear (in the p’s), asymptotically the dynamics is
governed by the linear equation eq. (7).

It is not easy to study the transient behavior of the
classical, dynamical systems defined by eqs. (7) and (B·1)
by analytical methods but it is almost trivial to simulate
these models on a computer. In Fig. B·1, we show some
representative simulation results to illustrate that the slightly
more complicated machine eq. (B·1) performs significantly
better than the simple machine eq. (7) with respect to the
number of events it takes for the machine to reach the
stationary state. Roughly speaking, after about 60 events,
machine eq. (B·1) has learned enough to reproduce the
correct averages. As expected on theoretical grounds, both
machines converge to the same stationary state.

A minor modification of algorithm eq. (B·1) yields the
DLM defined by

�k�1 ¼ 	ð1�wk�1Þ;
pk ¼ �k�1pk�1 þ ð1� �k�1Þek;

wk ¼ �wk�1 þ ð1� �Þ
kpk � ekk

2
: ðB:2Þ
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Note that the only change is in the third rule where we
replaced pk�1 by ek. This replacement causes the machine
to respond very fast to changes in the sequence of input
messages fekg but, at the same time, also leads to a reduction
of the average value of �k�1 which in turn, will cause the
detector model to produce a nonzero signal, independent of
the input messages [see Figs. 8(IIIa) and 8(IIIb)].

As an alternative to the pseudo-random ‘‘click generator’’
eq. (8), we may generate the clicks by means of a very
simple DLM18) containing a single internal variable 0 	
zk 	 1 that is updated according to

Sk ¼
0 if jp2

k � zk�1j < jp2
k � zk�1 � 1þ j

1 otherwise

�
;

zk ¼ zk�1 þ ð1� ÞSk: ðB:3Þ
Here, the parameter 0 <  < 1 plays the same role as 	 in
eq. (7). The non negative number p2

k is the input message for
the DLM. The dynamics of the system defined by eq. (B·3)
is very different from that of eq. (7).18) Elsewhere, we have
shown that for a fixed input message p2, the machine defined
by eq. (B·3) generates a binary sequence (the Sk’s) such that
in the long run the ratio of the number of ones relative to the
total number of events is equal to the time average of p2

k .18)

Thus, the machine defined by eq. (B·3) produces clicks with
a rate that is determined by p2

k .

Appendix C: Relation between Simulation Model and
Wave Mechanics

The simulation results presented in §5 demonstrate that the
event-based model is capable of reproducing the results of
wave theory without making recourse to the solution of the
wave equation or even a single concept of wave theory. As
there seems to be a general consensus that such models are not
supposed to exist, it is of interest to show that for the problems
that we deal with in this paper, the event-based model contains
the description that derives from Maxwell’s equations.

Our demonstration consists of two steps. First we relate
the variables of the event-based model to those of classical
electrodynamics. Second, in analogy with the derivation of

the diffusion equation from the discrete random walk model,
we show how our event-based model leads to the Debye
model for the interaction between material and electric field.
Other models such as the Drude or Lorentz model can be
derived in a similar manner but to keep the presentation
concise, these derivations are relegated to a future paper.

As is evident from Table C·I, the messenger can be viewed
as the event-based equivalent of a classical, linearly polarized
electromagnetic wave with frequency f : The message ek
corresponds to a plane wave with wave vector q (q ¼ 2� f =c).
The time-of-flight tk corresponds to the phase of the electric
field. Adding another clock to the messenger suffices to model
the second electric field component orthogonal to the first one,
and hence the fully polarized plane wave.27) For the systems
studied in the present paper including this extra feature,
namely the equivalent of the polarization of the wave, is not
necessary and therefore we confine the discussion to messages
that are represented by two-dimensional unit vectors.

The internal vector pk plays the role of the polarization
vector PðtÞ of the detector material. Indeed, comparing the
formal solution of eq. (7)

pk ¼ 	kp0 þ ð1� 	Þ
Xk�1

j¼0

	 jek�j; ðC:1Þ

with the constitutive equation

PðtÞ ¼
Z t

0

�ðuÞEðt � uÞ du; ðC:2Þ

in Maxwell’s theory,30) it is clear that both equations have
the same mathematical structure: The left hand sides are
convolutions of the incoming (applied) message (field) with
memory kernel 	 j [�ðuÞ] (in applications, we may assume that
the initial value p0 ¼ 0). Thus, the DLM is a simple model for
the interaction of the individual photons with the material of
the detector. The time-of-flight, corresponding to the phase of
the electric field, is used to update the internal vector which
corresponds to the polarization vector of the material.

Next, we show that this analogy can be carried much
further by mimicking the derivation that relates the discrete
random walk on a line to the one-dimensional diffusion
equation.37) The essential steps for both the random walk
and our event-based detector model are summarized in
Table C·II. Both models describe a process that proceeds in
discrete time steps �. The random walk model is formulated
on a lattice with mesh size �. In the case of the random walk,

Table C�I. Correspondence between Maxwell’s theory and the particle-

based, event-by-event simulation model. For simplicity of presentation,

we consider the case of a linearly polarized wave only.

Classical electrodynamics Event-based simulation model

Description Wave Particle

Oscillator frequency f Oscillator frequency f

Properties
Direction q Direction q

Propagation time t Time-of-flight tk

Phase velocity c Velocity c

Message E ¼ E0 cosð!t � q � rþ ’Þ ek ¼ ðcos 2� ftk; sin 2� ftkÞ

Material Polarization PðtÞ Internal vector pk

Interaction

with material
PðtÞ ¼

R t
0
�ðuÞEðt � uÞ du pk ¼ 	pk�1 þ ð1� 	Þek

0

0.2
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Fig. B�1. (Color online) The square of the length of the internal vector p2
k

as a function of the number of received events k for three different input

messages ek ¼ ðr1=2k ; ð1� rkÞ1=2Þ (top lines), ek ¼ ðcos�rk ; sin�rkÞ (mid-

dle lines), and ek ¼ ðcos 2�rk ; sin 2�rkÞ (bottom lines) where the 0 	
rk < 1 are uniform pseudo-random numbers. Dashed lines: Model eq. (7).

Solid lines: Model eq. (B·1) with � ¼ 0:9. The inset shows the short-time

response of models eq. (7) and eq. (B·1) in more detail. In all cases

p0 ¼ ð1; 0Þ, w0 ¼ 0:9, and 	 ¼ 0:999.
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we let the time step � and mesh size � go to zero. In the
event-based model we let the time step �, that is the time
between the arrival of successive messages, approach zero
and let 	 approach one. For both models, we demand that the
resulting continuum equations make sense. This enforces
relations between � and �2 and between � and 	, as shown in
Table C·II. Then, the former relation yields an explicit
expression of the diffusion coefficient D ¼ �2=2� in terms of
the length and time scale of the discrete random walk model.
Likewise, the latter leads to the Debye model for a
dispersive medium38) and gives an explicit expression for
the relaxation time 1=� ¼ �	=ð1� 	Þ in terms of the
parameters of the event-based model.

As Table C·II shows, under certain conditions, the discrete
models can be approximated by continuum equations that
describe the coarse-grained (in space-time for the random
walkers and in time for the event-based model) behavior but
the discrete models provide a description with details that can
never be extracted from the corresponding continuum
equations. Of course, the ultimate justification of the event-
based model is that, as shown in §5, it can reproduce the
results of wave theory. Appendix D gives a further justifi-
cation of our approach from a computational point of view.

Appendix D: Computational Point of View

There is a general consensus that unless we first solve the
wave equation and use this solution as the probability
distribution for generating events, there are very fundamen-
tal, apparently unsurmountable, problems to derive from a
wave mechanical description a process that produces the
events that are observed in experiment.33) The arguments
used are rather abstract and general33) and to understand the
subtilities that are involved it may help to address this issue
from a computational point of view.

For phenomena that cannot (yet) be described by a
deductive theory, it is common practice to use probabilistic
models. Although Kolmogorov’s probability theory provides
a rigorous framework to formulate such models, there are

ample examples that illustrate how easy it is to make
plausible assumptions that create all kinds of paradoxes,
also for every-day problems.32,37,39,40) Subtle mistakes such
as dropping (some of the essential) conditions, like in the
discussion of the double-slit experiment,41,42) mixing up the
meaning of physical and statistical independence or chang-
ing one probability space for another during the course of an
argument, can give rise to all kinds of paradoxes.32,41,43–46)

For instance, Feynman used the double-slit experiment as
an example to argue that ‘‘far more fundamental was the
discovery that in nature the laws of combining probabilities
were not those of the classical probability theory of
Laplace’’,47) but this statement has been shown to result
from an erroneous application of probability theory.32,41,42)

By construction, if we use a digital computer to produce
numbers as we do in this paper, we stay in the domain of
elementary arithmetic and we do not have to worry about the
subtleties of Kolmogorov’s probability theory.

Instead of discussing the apparently unsurmountable
problem in its full generality, which we could, it is more
instructive to examine in detail the simple, concrete example
of the double-slit model depicted in Fig. 2. According to
Maxwell’s theory, in the Fraunhofer regime the light
intensity at the detector on a circular screen is given by30)

Ið�Þ
Ið0Þ
¼
Z þ1
�1

eiqy0 sin ��ðy0Þ dy0
����

����
2

; ðD:1Þ

¼
sin

qa sin �

2

qa sin �

2

0
BBB@

1
CCCA

2

cos2 qd sin �

2
; ðD:2Þ

where �ðy0Þ ¼ ½�ða� jy0 � d=2jÞ þ�ða� jy0 þ d=2jÞ�=2a
is the normalized density distribution for the coordinate y0.

First, starting from the explicit expression eq. (D·2) for
the density Ið�Þ=Ið0Þ, it is trivial to construct an algorithm
that generates events according to this density. Indeed, let us
define

Table C�II. Analogy between the derivation of the diffusion equation from the random walk model and the derivation of one of the constitutive equations in

Maxwell’s theory from the discrete model eq. (7) proposed in this paper. The assumptions that the limiting values D ¼ lim�!0 lim�!0 �
2=2� and

� ¼ lim	!1� lim�!0ð1� 	Þ=�	 are nonzero and finite are essential to obtain a well-defined continuum approximation of the discrete update rules.

Random walk Detector model

Update rule pl;kþ1 ¼
1

2
ð plþ1;k þ pl�1;kÞ pk ¼ 	pk�1 þ ð1� 	Þek

Length scale: �
)

pl;k ¼ pðl�; k�Þ ¼ pðx; tÞ
pk ¼ pðk�Þ ¼ pðtÞ

Time scale: � ek ¼ eðk�Þ ¼ eðtÞ

Small � pl;kþ1 ¼ pðx; tÞ þ �
@pðx; tÞ
@t
þOð�2Þ pk�1 ¼ pðtÞ � �

@pðtÞ
@t
þOð�2Þ

Small � pl�1;k ¼ pðx; tÞ � �
@pðx; tÞ
@x

þ
�2

2

@2pðx; tÞ
@x2

þOð�3Þ

Small � and �
@pðx; tÞ
@t

�2

2�

@2pðx; tÞ
@x2

@pðtÞ
@t
 �

1� 	
�	

pðtÞ þ
1� 	
�	

eðtÞ

lim�!0 lim�!0

�2

2�
! D, 0 < D <1

lim	!1� lim�!0
1� 	
�	
! �, 0 < � <1

Equation
@pðx; tÞ
@t
¼ D

@2pðx; tÞ
@x2

@pðtÞ
@t
¼ ��pðtÞ þ �eðtÞ

Fourier space pð!Þ ¼ �ði!þ �Þ�1eð!Þ Pð!Þ ¼ �ð!ÞEð!Þ
+ +

Diffusion equation Constitutive equation
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Sjð�Þ ¼ �½Ið�Þ � rjIð0Þ�; ðD:3Þ

where 0 	 rj < 1 denotes a uniform pseudo-random number.
Then, the number of clicks of the detector at angular position
� is given by

Nkð�Þ ¼
1

k

Xk
j¼1

Sjð�Þ; ðD:4Þ

and for sufficiently large k, we have Nkð�Þ ! Ið�Þ=Ið0Þ with
probability one. This completes the construction of the
event-based algorithm based on the knowledge of Ið�Þ=Ið0Þ.
Obviously, this algorithm is built on the knowledge of the
explicit solution Ið�Þ of the wave problem. The events
generated by this algorithm build up the interference
pattern one-by-one and can be identified with the clicks of
the detectors. This is as far as the quantum theoretical
description goes in making contact to the experimental
observations: It provides a prescription to calculate the
probability density to observe a click on a detector. It is quite
common to postulate that there does not exist a description
that goes beyond the specification of the probability,
excluding that no further advance in a deeper understanding
of the process that produces the events can be made.

Disregarding this postulate, we may wonder what happens
if we take one step back and assume that we only know
about expression eq. (D·1) in terms of the wave amplitudes
expðiqy0 sin �Þ and density �ðy0Þ. Then, the obvious thing
to do is to compute the integral in eq. (D·1) numerically.
Without loss of generality, we may write

Að�Þ ¼
1

NðSÞ
X
y02S

eiqy0 sin �; ðD:5Þ

where the summation is over all y0 of the set S accounting
for the density �ðy0Þ and NðSÞ is the normalization factor. By
definition of the integral, if the number of elements of the set
S goes to infinity, we have jAð�Þj2 ! Ið�Þ=Ið0Þ.

Although the numerical calculation of the amplitude Að�Þ
is straightforward, there obviously is no relation between the
points y0 of the set S and the number of clicks of the detector
at �. In fact, the essence of quantum theory is that there is
only a relation between jAð�Þj2 and the number of clicks but
to know Að�Þ requires that we first generate (a lot of) pseudo-
events y0. Obviously, these pseudo-events y0 cannot have an
interpretation in terms of observed clicks.

The conclusion therefore is that the description in
terms of individual waves [eq. (D·1)] does not contain the
ingredients, not even conceptual, to define a process that
generates the clicks of the detectors that we observe.
Therefore, from a computational perspective, it is futile to
try inventing an event-based, particle-like process based on
the wave mechanical expression for the intensity in terms of
sums over amplitudes.

One may take the position that it is fundamentally
impossible to go beyond an event-level description based
on the knowledge of Ið�Þ=Ið0Þ but by postulating this to be
true, one simply postulates that it is impossible to make
any advance in a deeper understanding of event-based phe-
nomena. As we have shown by this and many earlier papers,
there is no rational argument that supports this postulate
other than that it is what we have been taught in physics
courses.

Having shown that our event-by-event simulation model
reproduces the results of wave theory without resorting to
a description in terms of waves, we now explain why, from
a computational point of view, we consider this to be an
accomplishment and why our approach works.

The crux of our approach is that we do not start from
expression eq. (D·1) but construct a discrete event process
that converges to eq. (D·1) while generating events that
directly correspond to the observed events. During the initial
phase, this process may generate events that are accidental
but once the process has reached its stationary state, the
events appear with frequencies that corresponds to those
predicted by wave theory.

To understand the idea behind our approach, it may
be helpful to draw an analogy with the well-known
Metropolis Monte Carlo (MMC) method for solving stat-
istical mechanical problems.48,49) The MMC method gen-
erates states S, events in our terminology, with a probability
density48,49)

pðSÞ ¼
e�EðSÞ=kBTX
S

e�EðSÞ=kBT
; ðD:6Þ

where EðSÞ denotes the energy of the state S, kB is
Boltzmann’s constant and T is the temperature. At first
sight, sampling from eq. (D·6) is impossible because in all
but a few nontrivial cases for which the partition functionP

S e�EðSÞ=kBT is known, we do not know the denominator.
The MMC method solves this problem by constructing a
Markov chain that generates a sequence of events S such that
asymptotically these events are distributed according to the
(unknown) probability density eq. (D·6).48,49)

The analogy with our approach is the following. Although
very different in all details, our event-based method uses a
deterministic process [implemented as a DLM, see eq. (7)]
of which the sampling distribution converges to the
unknown probability distribution Ið�Þ=Ið0Þ. The one-to-one
correspondence between the objects in the corpuscular,
event-based description and those in Maxwell’s theory (see
§C) ensures that in the long run, the event-based detector
model generates clicks with frequencies that correspond to
those of the unknown probability distribution Ið�Þ=Ið0Þ.
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