52 research outputs found
Fission Yeast Does Not Age under Favorable Conditions, but Does So after Stress
SummaryBackgroundMany unicellular organisms age: as time passes, they divide more slowly and ultimately die. In budding yeast, asymmetric segregation of cellular damage results in aging mother cells and rejuvenated daughters. We hypothesize that the organisms in which this asymmetry is lacking, or can be modulated, may not undergo aging.ResultsWe performed a complete pedigree analysis of microcolonies of the fission yeast Schizosaccharomyces pombe growing from a single cell. When cells were grown under favorable conditions, none of the lineages exhibited aging, which is defined as a consecutive increase in division time and increased death probability. Under favorable conditions, few cells died, and their death was random and sudden rather than following a gradual increase in division time. Cell death correlated with the inheritance of Hsp104-associated protein aggregates. After stress, the cells that inherited large aggregates aged, showing a consecutive increase in division time and an increased death probability. Their sisters, who inherited little or no aggregates, did not age.ConclusionsWe conclude that S. pombe does not age under favorable growth conditions, but does so under stress. This transition appears to be passive rather than active and results from the formation of a single large aggregate, which segregates asymmetrically at the subsequent cell division. We argue that this damage-induced asymmetric segregation has evolved to sacrifice some cells so that others may survive unscathed after severe environmental stresses
Calibration of Tethered Particle Motion Experiments
The Tethered Particle Motion (TPM) method has been used to observe and characterize a variety of protein-DNA interactions including DNA loping and transcription. TPM experiments exploit the Brownian motion of a DNA-tethered bead to probe biologically relevant conformational changes of the tether. In these experiments, a change in the extent of the bead’s random motion is used as a reporter of the underlying macromolecular dynamics and is often deemed sufficient for TPM analysis. However, a complete understanding of how the motion depends on the physical properties of the tethered particle complex would permit more quantitative and accurate evaluation of TPM data. For instance, such understanding can help extract details about a looped complex geometry (or multiple coexisting geometries) from TPM data. To better characterize the measurement capabilities of TPM experiments involving DNA tethers, we have carried out a detailed calibration of TPM magnitude as a function of DNA length and particle size. We also explore how experimental parameters such as acquisition time and exposure time affect the apparent motion of the tethered particle. We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200, 490 and 970 nm. We also present a systematic comparison between measured particle excursions and theoretical expectations, which helps clarify both the experiments and models of DNA conformation
Complexity of the Tensegrity Structure for Dynamic Energy and Force Distribution of Cytoskeleton during Cell Spreading
Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as cells reached maximum spreading. The dynamic flows of energy in struts imply that microtubules contribute to structure stabilization
Decomposition cross-correlation for analysis of collagen matrix deformation by single smooth muscle cells
Microvascular remodeling is known to depend on cellular interactions with matrix tissue. However, it is difficult to study the role of specific cells or matrix elements in an in vivo setting. The aim of this study is to develop an automated technique that can be employed to obtain and analyze local collagen matrix remodeling by single smooth muscle cells. We combined a motorized microscopic setup and time-lapse video microscopy with a new cross-correlation based image analysis algorithm to enable automated recording of cell-induced matrix reorganization. This method rendered 60–90 single cell studies per experiment, for which collagen deformation over time could be automatically derived. Thus, the current setup offers a tool to systematically study different components active in matrix remodeling
Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos
Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell
Intracellular nanosurgery and cell enucleation using a picosecond laser
Living cells are highly organized in space and time, which makes spatially and temporally confined manipulations an indispensable tool in cell biology. Laser-based nanosurgery is an elegant method that allows precise ablation of intracellular structures. Here, we show cutting of fluorescently labelled microtubules and mitotic spindles in fission yeast, performed with a picosecond laser coupled to a confocal microscope. Diverse effects from photo-bleaching to partial and complete breakage are obtained by varying the exposure time, while simultaneously imaging the structures of interest. Using this system we developed an efficient technique to generate enucleated cells without perturbing the distribution of other organelles. This enucleation method can be used to study the cytoskeleton in a nucleus-free environment, as well as the role of the nucleus in cell growth and a variety of cellular functions
Self-organization of dynein motors generates meiotic nuclear oscillations
Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell
Merotelic kinetochore attachment: causes and effects.
Accurate chromosome segregation depends on the proper attachment of sister kinetochores to microtubules emanating from opposite spindle poles. Merotelic kinetochore orientation is an error in which a single kinetochore is attached to microtubules emanating from both spindle poles. Despite correction mechanisms, merotelically attached kinetochores can persist until anaphase, causing chromatids to lag on the mitotic spindle and hindering their timely segregation. Recent studies showing that merotelic kinetochore attachment represents a major mechanism of aneuploidy in mitotic cells and is the primary mechanism of chromosomal instability in cancer cells have underlined the importance of studying merotely. Here, we highlight recent progress in our understanding of how cells prevent and correct merotelic kinetochore attachments
Interphase microtubules determine the initial alignment of the mitotic spindle
In the fission yeast Schizosaccharomyces pombe, interphase microtubules (MTs) position the nucleus [1, 2], which in turn positions the cell-division plane [1, 3]. It is unclear how the spindle orients, with respect to the predetermined division plane, to ensure that the chromosomes are segregated across this plane. It has been proposed that, during prometaphase, the astral MT interaction with the cell cortex aligns the spindle with the cell axis [4] and also participates in a spindle orientation checkpoint (SOC), which delays entry into anaphase as long as the spindle is misaligned [5-7]. Here, we trace the position of the spindle throughout mitosis in a single-cell assay. We find no evidence for the SOC. We show that the spindle is remarkably well aligned with the cell longitudinal axis at the onset of mitosis, by growing along the axis of the adjacent interphase MT. Misalignment of nascent spindles can give rise to anucleate cells when spindle elongation is impaired. We propose a new role for interphase microtubules: through interaction with the spindle pole body, interphase microtubules determine the initial alignment of the spindle in the subsequent cell division
Positioning and elongation of the fission yeast spindle by microtubule-based pushing
AbstractIn eukaryotic cells, proper position of the mitotic spindle is necessary for successful cell division and development. We explored the nature of forces governing the positioning and elongation of the mitotic spindle in Schizosaccharomyces pombe. We hypothesized that astral microtubules exert mechanical force on the S. pombe spindle and thus help align the spindle with the major axis of the cell [1, 2]. Microtubules were tagged with green fluorescent protein (GFP) [3] and visualized by two-photon microscopy. Forces were inferred both from time-lapse imaging of mitotic cells and, more directly, from mechanical perturbations induced by laser dissection [4, 5] of the spindle and astral microtubules. We found that astral microtubules push on the spindle poles in S. pombe, in contrast to the pulling forces observed in a number of other cell types [4, 6–9]. Further, laser dissection of the spindle midzone induced spindle collapse inward. This offers direct evidence in support of the hypothesis that spindle elongation is driven by the sliding apart of antiparallel microtubules in the spindle midzone [10, 11]. Broken spindles recovered and mitosis completed as usual. We propose a model of spindle centering and elongation by microtubule-based pushing forces
- …