21,822 research outputs found
Boundary layer flow induced by waves with acceleration skewness
Young Coastal Scientists and Engineers Conference 2007, PlymouthPeer reviewedPostprin
LHC Dark Matter Signals from Vector Resonances and Top Partners
Extensions of the Standard Model which address the hierarchy problem and dark
matter (DM) often contain top partners and additional resonances at the TeV
scale. We explore the phenomenology of a simplified effective model with a
vector resonance , a fermionic vector-like coloured partner of the top
quark as well as a scalar DM candidate and provide publicly
available implementations in CalcHEP and MadGraph. We study the process at the LHC and find that it
plays an important role in addition to the production via
strong interactions. It turns out that the presence of the can provide a
dominant contribution to the signature without
conflicting with existing bounds from searches in di-jet and di-lepton
final states. We find that through this process, the LHC is already probing DM
masses up to about 900 GeV and top partner masses up to about 1.5 TeV, thus
exceeding the current bounds from QCD production alone almost by a factor of
two for both particles.Comment: 32 pages, 15 figures, 3 table
Neural system identification for large populations separating "what" and "where"
Neuroscientists classify neurons into different types that perform similar
computations at different locations in the visual field. Traditional methods
for neural system identification do not capitalize on this separation of 'what'
and 'where'. Learning deep convolutional feature spaces that are shared among
many neurons provides an exciting path forward, but the architectural design
needs to account for data limitations: While new experimental techniques enable
recordings from thousands of neurons, experimental time is limited so that one
can sample only a small fraction of each neuron's response space. Here, we show
that a major bottleneck for fitting convolutional neural networks (CNNs) to
neural data is the estimation of the individual receptive field locations, a
problem that has been scratched only at the surface thus far. We propose a CNN
architecture with a sparse readout layer factorizing the spatial (where) and
feature (what) dimensions. Our network scales well to thousands of neurons and
short recordings and can be trained end-to-end. We evaluate this architecture
on ground-truth data to explore the challenges and limitations of CNN-based
system identification. Moreover, we show that our network model outperforms
current state-of-the art system identification models of mouse primary visual
cortex.Comment: NIPS 201
Recommended from our members
Experimental model of the interfacial instability in aluminium reduction cells
A solution has been found to the long-standing problem of experimental modelling of the interfacial instability in aluminium reduction cells. The idea is to replace the electrolyte overlaying molten aluminium with a mesh of thin rods supplying current down directly into the liquid metal layer. This eliminates electrolysis altogether and all the problems associated with it, such as high temperature, chemical aggressiveness of media, products of electrolysis, the necessity for electrolyte renewal, high power demands, etc. The result is a room temperature, versatile laboratory model which simulates Sele-type, rolling pad interfacial instability. Our new, safe laboratory model enables detailed experimental investigations to test the existing theoretical models for the first time
Propagation failure of excitation waves on trees and random networks
Excitation waves are studied on trees and random networks of coupled active
elements. Undamped propagation of such waves is observed in those networks. It
represents an excursion from the resting state and a relaxation back to it for
each node. However, the degrees of the nodes influence drastically the
dynamics. Excitation propagates more slowly through nodes with larger degrees
and beyond some critical degree waves lose their stability and disappear. For
regular trees with a fixed branching ratio, the critical degree is determined
with an approximate analytical theory which also holds locally for the early
stage of excitation spreading in random networks.Comment: 7 pages, 7 figures, submitted to ep
Cardio-Protection Afforded by Β-Blockade Is Maintained During Resistance Exercise
Objectives Whether or not the cardio-protective effect of β-adrenergic blockade is retained during resistance exercise has not been systematically evaluated. Therefore the purpose of this study was to measure selected cardiorespiratory responses to isometric exercise involving hand-gripping, single-leg extension, or double-leg dead-lift, under placebo (control), β1-selective (atenolol), and non-selective (propranolol) adrenergic blockade conditions. Design Eleven young male adults were evaluated in a randomized, double-blinded, repeated measures study design and performed all three exercise modalities at 30% of maximal voluntary contraction under placebo, atenolol and propranolol conditions. Methods Heart rate, systolic and diastolic blood pressure, rate-pressure product, oxygen uptake, cardiac output, stroke volume and total peripheral resistance were directly measured or calculated at rest and during the third minute of each of the three exercise modes. Results Irrespective of drug condition, a graded pressor response was observed going from rest to exercise so that rest \u3c handgrip \u3c leg extension \u3c dead-lift for heart rate, systolic and diastolic blood pressures, rate-pressure product and oxygen uptake (p \u3c 0.05 for all). Cardiac output only increased with the dead-lift mode of exercise (p \u3c 0.01). Importantly β-adrenergic blockade with either atenolol or propranolol similarly attenuated the rise in heart rate, and systolic blood pressure; thus rate-pressure product demonstrated a mode-of-exercise by drug interaction effect (p \u3c 0.001) with the greatest reductions seen with the dead-lift procedure. Conclusions The findings indicate that cardio-protection afforded by selective or non-selective β-blockade at rest is preserved during isometric exercise and even enhanced once heart rate increases above 100 beats min−1
Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow
Peer reviewedPublisher PD
- …