336 research outputs found

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Multivariate multi-way analysis of multi-source data

    Get PDF
    Motivation: Analysis of variance (ANOVA)-type methods are the default tool for the analysis of data with multiple covariates. These tools have been generalized to the multivariate analysis of high-throughput biological datasets, where the main challenge is the problem of small sample size and high dimensionality. However, the existing multi-way analysis methods are not designed for the currently increasingly important experiments where data is obtained from multiple sources. Common examples of such settings include integrated analysis of metabolic and gene expression profiles, or metabolic profiles from several tissues in our case, in a controlled multi-way experimental setup where disease status, medical treatment, gender and time-series are usual covariates

    Validation of nonlinear PCA

    Full text link
    Linear principal component analysis (PCA) can be extended to a nonlinear PCA by using artificial neural networks. But the benefit of curved components requires a careful control of the model complexity. Moreover, standard techniques for model selection, including cross-validation and more generally the use of an independent test set, fail when applied to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents a new approach for validating the complexity of nonlinear PCA models by using the error in missing data estimation as a criterion for model selection. It is motivated by the idea that only the model of optimal complexity is able to predict missing values with the highest accuracy. While standard test set validation usually favours over-fitted nonlinear PCA models, the proposed model validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure

    Applications of Information Theory to Analysis of Neural Data

    Full text link
    Information theory is a practical and theoretical framework developed for the study of communication over noisy channels. Its probabilistic basis and capacity to relate statistical structure to function make it ideally suited for studying information flow in the nervous system. It has a number of useful properties: it is a general measure sensitive to any relationship, not only linear effects; it has meaningful units which in many cases allow direct comparison between different experiments; and it can be used to study how much information can be gained by observing neural responses in single trials, rather than in averages over multiple trials. A variety of information theoretic quantities are commonly used in neuroscience - (see entry "Definitions of Information-Theoretic Quantities"). In this entry we review some applications of information theory in neuroscience to study encoding of information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure

    An Algorithmic Approach to Missing Data Problem in Modeling Human Aspects in Software Development

    Get PDF
    Background: In our previous research, we built defect prediction models by using confirmation bias metrics. Due to confirmation bias developers tend to perform unit tests to make their programs run rather than breaking their code. This, in turn, leads to an increase in defect density. The performance of prediction model that is built using confirmation bias was as good as the models that were built with static code or churn metrics. Aims: Collection of confirmation bias metrics may result in partially "missing data" due to developers' tight schedules, evaluation apprehension and lack of motivation as well as staff turnover. In this paper, we employ Expectation-Maximization (EM) algorithm to impute missing confirmation bias data. Method: We used four datasets from two large-scale companies. For each dataset, we generated all possible missing data configurations and then employed Roweis' EM algorithm to impute missing data. We built defect prediction models using the imputed data. We compared the performances of our proposed models with the ones that used complete data. Results: In all datasets, when missing data percentage is less than or equal to 50% on average, our proposed model that used imputed data yielded performance results that are comparable with the performance results of the models that used complete data. Conclusions: We may encounter the "missing data" problem in building defect prediction models. Our results in this study showed that instead of discarding missing or noisy data, in our case confirmation bias metrics, we can use effective techniques such as EM based imputation to overcome this problem

    Automatic 3D Facial Expression Analysis in Videos

    Full text link
    We introduce a novel framework for automatic 3D facial expression analysis in videos. Preliminary results demonstrate editing facial expression with facial expression recognition. We first build a 3D expression database to learn the expression space of a human face. The real-time 3D video data were captured by a camera/projector scanning system. From this database, we extract the geometry deformation independent of pose and illumination changes. All possible facial deformations of an individual make a nonlinear manifold embedded in a high dimensional space. To combine the manifolds of different subjects that vary significantly and are usually hard to align, we transfer the facial deformations in all training videos to one standard model. Lipschitz embedding embeds the normalized deformation of the standard model in a low dimensional generalized manifold. We learn a probabilistic expression model on the generalized manifold. To edit a facial expression of a new subject in 3D videos, the system searches over this generalized manifold for optimal replacement with the 'target' expression, which will be blended with the deformation in the previous frames to synthesize images of the new expression with the current head pose. Experimental results show that our method works effectively

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Recognising facial expressions in video sequences

    Full text link
    We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base
    corecore