650 research outputs found

    A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states

    Get PDF
    This paper presents a systematic review for the most commonly used lumped-parameter equivalent circuit model structures in lithium-ion battery energy storage applications. These models include the Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are recursively estimated using a nonlinear system identification technique based on the dual Extended Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with a dynamic hysteresis model to further enhance the performance of the SOC estimator

    Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - II: Partial Differential Equations

    Full text link
    The linearization of complex ordinary differential equations is studied by extending Lie's criteria for linearizability to complex functions of complex variables. It is shown that the linearization of complex ordinary differential equations implies the linearizability of systems of partial differential equations corresponding to those complex ordinary differential equations. The invertible complex transformations can be used to obtain invertible real transformations that map a system of nonlinear partial differential equations into a system of linear partial differential equation. Explicit invariant criteria are given that provide procedures for writing down the solutions of the linearized equations. A few non-trivial examples are mentioned.Comment: This paper along with its first part ODE-I were combined in a single research paper "Linearizability criteria for systems of two second-order differential equations by complex methods" which has been published in Nonlinear Dynamics. Due to citations of both parts I and II these are not replaced with the above published articl

    A novel genetic programming approach to the design of engine control systems for the voltage stabilisation of hybrid electric vehicle generator outputs

    No full text
    This paper describes a Genetic Programming based automatic design methodology applied to the maintenance of a stable generated electrical output from a series-hybrid vehi- cle generator set. The generator set comprises a 3-phase AC generator whose output is subsequently rectified to DC.The engine/generator combination receives its control input via an electronically actuated throttle, whose control integration is made more complex due to the significant system time delay. This time delay problem is usually addressed by model predictive design methods, which add computational complexity and rely as a necessity on accurate system and delay models. In order to eliminate this reliance, and achieve stable operation with disturbance rejection, a controller is designed via a Genetic Programming framework implemented directly in Matlab, and particularly, Simulink. the principal objective is to obtain a relatively simple controller for the time-delay system which doesn’t rely on computationally expensive structures, yet retains inherent disturabance rejection properties. A methodology is presented to automatically design control systems directly upon the block libraries available in Simulink to automatically evolve robust control structures

    Association of G6PD 202A,376G with lower haemoglobin concentration but not increased haemolysis in patients with sickle cell anaemia

    Full text link
    The genetic bases of the highly variable degrees of anaemia and haemolysis in persons with Hb SS are not fully known, but several studies have indicated that G6PD deficiency is not a factor. The G6PD 202A and G6PD 376G alleles and α-thalassaemia were determined by molecular genetic testing in 261 children and adolescents with Hb SS in a multicentre study. G6PD 202A,376G (G6PD A−) was defined as hemizygosity for both alleles in males and homozygosity in females. Among the participants 41% were receiving hydroxycarbamide. The prevalence of G6PD 202A,376G was 13·6% in males and 3·3% in females with an overall prevalence of 8·7%. G6PD 202A,376G was associated with a 10 g/l decrease in haemoglobin concentration ( P  = 0·008) but not with increased haemolysis as measured by lactate dehydrogenase, bilirubin, aspartate-aminotransferase, reticulocyte count or a haemolytic component derived from these markers ( P  > 0·09). Similar results were found within a sub-group of children who were not receiving hydroxycarbamide. By comparison, single and double α-globin deletions were associated with progressively higher haemoglobin concentrations ( P  = 0·005 for trend), progressively lower values for haemolytic component ( P  = 0·007), and increased severe pain episodes ( P  < 0·001). In conclusion, G6PD 202A,376G may be associated with lower haemoglobin concentration in sickle cell anaemia by a mechanism other than increased haemolysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79250/1/j.1365-2141.2010.08215.x.pd

    Real-time energy storage simulators for the electricity grid

    Get PDF
    In this paper, a novel Distributed Real-Time Simulation Environment (DRTSE) which enables the coordinated control of multiple Real-Time Simulators (RTSs) positioned across the UK is introduced and demonstrated for an energy storage application. Using RTSs instead of physical energy storage assets enables the testing of different communication and control strategies, thereby reducing the risk of failure when the physical storage assets are deployed. In addition, the testing of different storage types (e.g. batteries, compressed air, flywheels, etc.) and storage locations can be conducted without expensive hardware modifications. In this paper, technical details of the RTSs are given, including the hardware and electrical storage models. The Central Controller (CC) and communication are also described, and results from the DRTSE presented

    Mechanisms of Hemolysis-Associated Platelet Activation

    Get PDF
    Background Intravascular hemolysis occurs after blood transfusion, in hemolytic anemias, and in other conditions, and is associated with hypercoagulable states. Hemolysis has been shown to potently activate platelets in vitro and in vivo, and several mechanisms have been suggested to account for this, including: (i) direct activation by hemoglobin (Hb); (ii) increase in reactive oxygen species (ROS); (iii) scavenging of nitric oxide (NO) by released Hb; and (iv) release of intraerythrocytic ADP. Objective To elucidate the mechanism of hemolysis-mediated platelet activation. Methods We used flow cytometry to detect PAC-1 binding to activated platelets for in vitro experiments, and a Siemens\u27 Advia 120 hematology system to assess platelet aggregation by using platelet counts from in vivo experiments in a rodent model. Results We found that Hb did not directly activate platelets. However, ADP bound to Hb could cause platelet activation. Furthermore, platelet activation caused by shearing of red blood cells (RBCs) was reduced in the presence of apyrase, which metabolizes ADP to AMP. The use of ROS scavengers did not affect platelet activation. We also found that cell-free Hb enhanced platelet activation by abrogating the inhibitory effect of NO on platelet activation. In vivo infusions of ADP and purified (ADP-free) Hb, as well as hemolysate, resulted in platelet aggregation, as shown by decreased platelet counts. Conclusion Two primary mechanisms account for RBC hemolysis-associated platelet activation: ADP release, which activates platelets; and cell-free Hb release, which enhances platelet activation by lowering NO bioavailability

    Angiogenic and Inflammatory Markers of Cardiopulmonary Changes in Children and Adolescents with Sickle Cell Disease

    Get PDF
    Background: Pulmonary hypertension and left ventricular diastolic dysfunction are complications of sickle cell disease. Pulmonary hypertension is associated with hemolysis and hypoxia, but other unidentified factors are likely involved in pathogenesis as well. Design and Methods: Plasma concentrations of three angiogenic markers (fibroblast growth factor, platelet derived growth factor-BB [PDGF-BB], vascular endothelial growth factor [VEGF]) and seven inflammatory markers implicated in pulmonary hypertension in other settings were determined by Bio-Plex suspension array in 237 children and adolescents with sickle cell disease at steady state and 43 controls. Tricuspid regurgitation velocity (which reflects systolic pulmonary artery pressure), mitral valve E/Edti ratio (which reflects left ventricular diastolic dysfunction), and a hemolytic component derived from four markers of hemolysis and hemoglobin oxygen saturation were also determined. Results: Plasma concentrations of interleukin-8, interleukin-10 and VEGF were elevated in the patients with sickle cell disease compared to controls (P≤0.003). By logistic regression, greater values for PDGF-BB (P = 0.009), interleukin-6 (P = 0.019) and the hemolytic component (P = 0.026) were independently associated with increased odds of elevated tricuspid regurgitation velocity while higher VEGF concentrations were associated with decreased odds (P = 0.005) among the patients with sickle cell disease. These findings, which are consistent with reports that PDGF-BB stimulates and VEGF inhibits vascular smooth muscle cell proliferation, did not apply to E/Etdi. Conclusions: Circulating concentrations of angiogenic and pro-Inflammatory markers are altered in sickle cell disease children and adolescents with elevated tricuspid regurgitation velocity, a subgroup that may be at risk for developing worsening pulmonary hypertension. Further studies to understand the molecular changes in these children are indicated

    Endothelin-1 Predicts Hemodynamically Assessed Pulmonary Arterial Hypertension in HIV Infection.

    Get PDF
    BackgroundHIV infection is an independent risk factor for PAH, but the underlying pathogenesis remains unclear. ET-1 is a robust vasoconstrictor and key mediator of pulmonary vascular homeostasis. Higher levels of ET-1 predict disease severity and mortality in other forms of PAH, and endothelin receptor antagonists are central to treatment, including in HIV-associated PAH. The direct relationship between ET-1 and PAH in HIV-infected individuals is not well described.MethodsWe measured ET-1 and estimated pulmonary artery systolic pressure (PASP) with transthoracic echocardiography (TTE) in 106 HIV-infected individuals. Participants with a PASP ≥ 30 mmHg (n = 65) underwent right heart catheterization (RHC) to definitively diagnose PAH. We conducted multivariable analysis to identify factors associated with PAH.ResultsAmong 106 HIV-infected participants, 80% were male, the median age was 52 years and 77% were on antiretroviral therapy. ET-1 was significantly associated with higher values of PASP [14% per 0.1 pg/mL increase in ET-1, p = 0.05] and PASP ≥ 30 mmHg [PR (prevalence ratio) = 1.24, p = 0.012] on TTE after multivariable adjustment for PAH risk factors. Similarly, among the 65 individuals who underwent RHC, ET-1 was significantly associated with higher values of mean pulmonary artery pressure and PAH (34%, p = 0.003 and PR = 2.43, p = 0.032, respectively) in the multivariable analyses.ConclusionsHigher levels of ET-1 are independently associated with HIV-associated PAH as hemodynamically assessed by RHC. Our findings suggest that excessive ET-1 production in the setting of HIV infection impairs pulmonary endothelial function and contributes to the development of PAH
    • …
    corecore