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Abstract—In this paper, a novel Distributed Real-Time Sim-
ulation Environment (DRTSE) which enables the coordinated
control of multiple Real-Time Simulators (RTSs) positioned
across the UK is introduced and demonstrated for an energy
storage application. Using RTSs instead of physical energy
storage assets enables the testing of different communication and
control strategies, thereby reducing the risk of failure when the
physical storage assets are deployed. In addition, the testing of
different storage types (e.g. batteries, compressed air, flywheels,
etc.) and storage locations can be conducted without expensive
hardware modifications. In this paper, technical details of the
RTSs are given, including the hardware and electrical storage
models. The Central Controller (CC) and communication are
also described, and results from the DRTSE presented.

Index Terms—Battery management, Electricity grids, Energy
storage, Hardware-in-the-loop, Real-time systems

I. INTRODUCTION

Increasing the quantity of renewable electricity in the United
Kingdom reduces the reliance on imported energy, reduces
global greenhouse gas emissions, and reduces local pollution.
The intermittency of renewable generation is a challenge and
energy storage is one of the most cost effective methods of
incorporating more renewable electricity generation [1].

Significant research has been conducted into optimising the
planning [2], [3] and operation [4], [5] of energy storage on
the electricity grid, as well as the forecasts required for these
optimisations [6], [7]. After such studies are completed and the
specifications and operating approach are known, the energy
storage could be installed. Alternatively, an intermediate step
of real-time simulation can be used before committing to an
investment in physical energy storage hardware.

A. Real-Time Energy Storage Simulation

Real-time simulation involves running a model at the same
speed as it would be run if it were a physical system, i.e.
one second in the model takes one second in reality. In [8],
real-time simulation was used to develop an algorithm to
estimate the state of charge of a lithium-ion battery pack. A
physical battery module is connected to an electrical load and
a real-time model estimating the state of charge is run on a

computer. The real-time simulation validates the correctness
and effectiveness of the algorithm and evaluates the accuracy,
robustness, and real-time computing ability in practice.

In [9], a physical battery is used and connected to a
controller and a real-time model of a distribution grid. An
optimisation algorithm is developed and the algorithm is
demonstrated using a grid peak shaving application, with the
objective of minimising the net peak load of a building. The
use of real-time simulation enables detailed monitoring of bat-
tery energy storage systems under different design scenarios.

B. Geographically Distributed Real-Time Simulation Benefits

Fig. 1 compares methods to develop energy storage con-
trol algorithms, ranging from developing the algorithm on a
single computer using historical data, to physically installing
hardware costing millions of dollars. This paper is focused
on method c), developing the DRTSE with multiple RTSs at
geographically distributed locations on the electricity grid.

Often methods b), c) and d) from Fig. 1 may be skipped
and the energy storage hardware installed and operated after
an algorithm has been developed using historical data (method
a)). However, these methods cannot fully account for phenom-
ena observed in real-time operation such as communication
latencies, real hardware constraints, and measurement errors.
These can have a significant effect, particularly in the delivery
of services aimed to compensate for fast transients and where a
high number of storage assets might be required to respond in
a coordinated way. Using the DRTSE developed in this paper
can inform and increase confidence in modelling approaches,
as such effects can be recorded, analysed, and ultimately
accounted for before the expensive hardware is installed.
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Fig. 1. Methods to develop energy storage control algorithms



The DRTSE developed is more expensive than using a single
computer, with the total cost being roughly 40 k$. However,
this cost is small compared to the likely cost of physically
installing hardware. The geographically distributed aspect of
the DRTSE has the benefits over a single computer of ensuring
control algorithms are developed with realistic communication
commands and delays and are subject to unexpected communi-
cation failures, which will undoubtedly occur in a real system.
These benefits of the DRTSE may counter the increased costs
as there will be less risk of integration problems when the
energy storage assets are physically installed.

A further benefit of the DRTSE is that different types of
energy storage system can be tested, simply by changing the
model running on the RTSs, without changing any hardware.
For example, a battery could be replaced with a flywheel
simply by changing the model running on the RTS.

An overview of the DRTSE is given in Section II. Section
III describes the RTSs, including the hardware and the model
running on the RTSs. Section IV describes the CC, which con-
trols the RTSs, and the communication method. An experiment
using the DRTSE is shown in Section V.

II. DISTRIBUTED REAL-TIME SIMULATION
ENVIRONMENT

The DRTSE is developed to represent multiple energy
storage systems across the United Kingdom being controlled
from a central location by an aggregator. To represent this
scenario, five RTSs are installed and each RTS runs a model
of an energy storage system in real-time. The five RTSs are
placed at five locations around the UK where energy storage
systems may be deployed in the future (see Fig. 2).

The RTSs are controlled by a CC, which continually runs
a model to determine the commands to send to each of the
RTSs. The commands include the power that the RTS should
charge or discharge at. The commands can also request the
status of the RTS, for example the grid power, the state of
charge, or the local measurements of frequency and voltage,
all of which are calculated locally by the RTS.
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Fig. 3. The Distributed Real-Time Simulation Environment (DRTSE)

This creates a DRTSE as illustrated in Fig. 2 which is a
close facsimile of an aggregator controlling five energy storage
systems, the only difference being that no power is physically
transferred to or from the grid at each location.

This lack of power transfer is a limitation of the DRTSE, for
if the RTSs were real energy storage systems the grid would
be impacted by the energy storages charging and discharging.
Local changes in grid voltage can be incorporated by including
a local grid model on the RTS, but it is not possible to
impact the global grid frequency. If the energy storage power
is relatively small, the global impact of the energy storage on
the grid frequency would not be significant and the DRTSE
can be considered a close representation of a real system.

III. REAL-TIME STORAGE SIMULATORS

A. Electronics Hardware

An overview of the electronics hardware can be seen in Fig.
4. The main component of the RTSs is the real-time simulation
machine, which continually runs the model of the storage asset
and obtains real-time voltage measurements. For this work, a
Speedgoat Unit Real-Time Target Machine is used [13]. The
machine has an Intel Atom x5-E3940 1.6 GHz quad-core CPU
and 4 GB DDR3 of memory. To measure voltage, the IO191
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Fig. 4. RTS electronics hardware, including voltage transducer [12]
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Fig. 5. Overview of the model running on each RTS

module is added, which includes analogue inputs of 16-bit
resolution and sampling up to 250 kSPS.

To ensure the RTSs are representative of real energy storage
assets, grid voltage measurements are obtained at each RTS
location. The voltage measurements are used to calculate the
grid frequency and RMS voltage, and are used as inputs for
the power converter model.

B. Energy Storage Model
In the future, different energy storage models can be run

on the RTSs. At present, each RTS runs the same model,
which includes an averaged model for a bi-directional power
converter and the Simscape behavioral battery model [14],
an overview of the model is given in Fig. 5. The converter
model uses the measured grid voltages to obtain phase and
frequency information using a phase locked loop. It includes
an inner current controller and an outer real and reactive power
controller, implemented in the d-q domain. The battery model
is an electrical 2RC (Resistor Capacitor) model, which is
commonly used for battery modelling [15]. The RC values are
averaged across all states of charge and based on the University
of Sheffield Willenhall battery [16].

The electrical values used in the model are seen on Fig.
5. Key considerations for the model are the timestep and
the control loop gains. Higher control loop gains mean the
converter reaches the requested powers in a shorter time,
however higher gains also mean a smaller timestep is required.
The smaller the timestep, the more computational power is
required and so a tradeoff must be made when selecting the
gains. With the Speedgoat machine running the model in Fig.
5, the smallest timestep possible was 200 µs (5 kHz). Below
this value the Speedgoat machine could not complete the
model calculations for each step in real-time. With a timestep
less than 500 µs (2 kHz), missed ticks did occur occasionally
(1-2 times per minute). The largest timestep possible was
1000 µs (1 kHz), above this value the control loops did not
converge to the requested powers even with very low gains.
At 1000 µs, power settling time for a step change from 0 to
1 MW is approximately 120 ms (6 line cycles).

The real-time simulation machines use the Backward Euler
method [17] as part of the real-time solver. The Backward

Euler method exhibits numerical damping which improves
stability for long timesteps. However, it also introduces small
errors in time-varying signals which become noticeable when
the errors are integrated over time. This means that, for
example, the state of charge of a battery (which is a result
of the integral of battery current over time) tends to drift even
when zero real power flows through the converter. Over the
course of a day, this drift can be significant, depending on
the capacity of the storage and the rating of the converter
(e.g. 32% SoC/day for a 1 MW, 1 MWh battery, with a
1.5 kHz timestep). Reducing the timestep reduces the drift
error in rough proportion to the timestep, but this requires more
powerful real-time simulation machines to run a model of a
given complexity. Other integration methods can be used that
do not suffer from similar drift (such as a Trapezoidal method),
however these tend to require shorter timesteps to ensure
stability (4 kHz minimum for the model here). In practice,
given the computational limits of the Speedgoats, Backwards
Euler at 1.5 kHz was found to be a good compromise.

IV. CENTRAL CONTROLLER AND COMMUNICATION

A. Hardware and Controller Model

The CC is run on a Linux PC in Oxford with 16 GB System
memory and an Intel Core i7-10700 2.90 GHz CPU.

The CC model is a python script run in a loop. An overview
of the steps that may be taken on the CC can be seen in Fig.
6. To make decisions, the CC model can obtain data from 1)
the RTSs, which respond with locally calculated data, such
as local voltage and frequency, real and reactive power, state
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Fig. 6. Example of an algorithm running on the CC
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of charge, etc., 2) the database, which is continually storing
historical data from the DRTSE, or 3) online data sources,
such as National Grid APIs, weather forecasts, etc. Once the
CC has the data, the CC then decides what powers are required
from each RTS, and then sends these power requests to the
RTSs. In this example, the loop is a time loop and executes at
regular time intervals. Some control algorithms may be event
driven, whereby the loop executes when triggered by external
events occurring at the RTSs or elsewhere (e.g. a dispatch
command from the grid system operator).

B. Communication

To establish communication between the RTSs around the
country and the CC in Oxford, Secure Shell (SSH) tunnelling
is used. The SSH tunnel creates links between ports on the
RTSs and ports on the CC. The location and host network of
each RTS is different and so may have different network pro-
tections, therefore each RTS is programmed to automatically
create an SSH tunnel to the Oxford CC on startup. Once this
SSH tunnel is created, the CC can reverse-tunnel back to the
RTS to communicate with the RTS, as shown in Fig. 7.

The SSH tunnel cannot be made directly to the CC as the
CC sits behind the Oxford network gateway. Instead, each
RTS connects to an external facing IP address and the gateway
forwards connections to the CC PC on the local network. In
total, six ports are opened, three from the CC to the RTS,
for 1) transfer of files, 2) sending power commands, and 3)
sending a request for data. Three connections are made from
the RTS to the CC, to 4) send data to the database, 5) send
data when requested, and 6) check if the tunnel is still open.

Once the SSH tunnel is created, requests from the RTSs and
CC are sent to local ports. For example, when the CC sends a

Oxford Sheffield
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Fig. 8. Response times from the RTSs
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Fig. 9. Data from RTSs and Elexon [18]

power request to the Sheffield RTS, the relevant SSH argument
for sending power commands is -R 51002:localhost:51000.
Port 51002 is the port on the CC assigned for sending powers
to Sheffield. The CC therefore sends the power to IP localhost,
port 51002 and the RTS is programmed to listen for power
requests from IP localhost, port 51000.

In the above case the RTS then responds to the request and
the data is received by the CC. A histogram showing the time
between sending the request and receiving the data can be
seen in Fig. 8. The average response time of Sheffield, 45ms,
is likely to be acceptable for grid applications.

C. Timing

To obtain accurate data from across the UK, each measure-
ment from each RTS is timestamped when it is collected. The
RTS clocks are set using the Network Time Protocol (NTP).
A snapshot of grid frequency data from Oxford, Sheffield,
Birmingham, Newcastle and data recorded by Elexon for
National Grid [18] can be seen in Fig. 9. From this figure
it can be seen that the frequencies recorded in all locations
are very similar (±0.001 Hz or 20 ppm) and match well to the
National Grid recorded frequency.

V. DISCUSSION

The purpose of this paper is to introduce the technical details
of the DRTSE. In future work detailed algorithms will be
developed to test on the DRTSE. Therefore, only a simple
scenario is used for demonstration of the DRTSE in this paper.
In this scenario, an aggregator is controlling four batteries
located in Oxford, Sheffield, Birmingham and Newcastle.
Initially, all the batteries are providing the frequency response
service, with the exception of the Oxford battery, which is idle.
The frequency response service provided is the National Grid
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service, Dynamic Containment [19], which uses a lookup table
to set the battery power depending on the grid frequency. For
frequency response, fast response times (<0.5 s) are required.
The lookup table is therefore stored locally on the RTS and
the only signal from the CC is to start and stop providing
frequency response.

In the scenario, after some time, the Sheffield battery
experiences a fault and its real power delivery drops to zero.
The aggregator is contracted to provide frequency response
service to the grid and so the aggregator then instructs the
Oxford battery to provide frequency response to the grid, the
results and decision flow chart can be seen in Fig. 10. Although
the model is being run with a timestep of 1 ms, the data is
only recorded to the database every 50 ms and the CC polls
the RTSs every 100 ms. In this example, the 1 MW lost from
Sheffield was delivered by Oxford within 310 ms. This 310 ms
includes 1) the CC polling time, 2) two network delays and
3) the controller settling time.

VI. CONCLUSION

A novel DRTSE that enables the coordinated control of
five Real-time Storage RTSs across the UK has been created.
Compared to simulating coordinated control of energy storage
devices on one computer, the DRTSE has the advantages of
forcing the control algorithm to deal with realistic uncertain
grid and communication behaviour. During longer term stud-
ies, simulating in real-time is also likely to highlight issues
which are not easily predicted, for example local controller
response to unexpected abnormal grid events.

The main limitation of the DRTSE is that power is not trans-
ferred to or from the grid. The impact of the power transfer on
the local grid voltage can be modelled on the RTS, however
the impact on the global grid frequency cannot be included
without physical power transfer. Physical power transfer with
the grid would require physical storage hardware, which would
significantly increase the cost and time of experiments.

The main benefits of the DRTSE are that coordinated control
algorithms can be developed and rapidly tested before being
deployed in real assets. Different storage technologies can also
be tested without expensive hardware modifications. Future
work will involve developing more storage technology models
to run on the RTSs and developing and testing new CC control
strategies.
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