111 research outputs found

    PT Symmetric, Hermitian and P-Self-Adjoint Operators Related to Potentials in PT Quantum Mechanics

    Get PDF
    In the recent years a generalization H=p2+x2(ix)ϵH=p^2 +x^2(ix)^\epsilon of the harmonic oscillator using a complex deformation was investigated, where \epsilon\ is a real parameter. Here, we will consider the most simple case: \epsilon even and x real. We will give a complete characterization of three different classes of operators associated with the differential expression H: The class of all self-adjoint (Hermitian) operators, the class of all PT symmetric operators and the class of all P-self-adjoint operators. Surprisingly, some of the PT symmetric operators associated to this expression have no resolvent set

    PT-Symmetric Quantum Theory Defined in a Krein Space

    Full text link
    We provide a mathematical framework for PT-symmetric quantum theory, which is applicable irrespective of whether a system is defined on R or a complex contour, whether PT symmetry is unbroken, and so on. The linear space in which PT-symmetric quantum theory is naturally defined is a Krein space constructed by introducing an indefinite metric into a Hilbert space composed of square integrable complex functions in a complex contour. We show that in this Krein space every PT-symmetric operator is P-Hermitian if and only if it has transposition symmetry as well, from which the characteristic properties of the PT-symmetric Hamiltonians found in the literature follow. Some possible ways to construct physical theories are discussed within the restriction to the class K(H).Comment: 8 pages, no figures; Refs. added, minor revisio

    On Existence of a Biorthonormal Basis Composed of Eigenvectors of Non-Hermitian Operators

    Full text link
    We present a set of necessary conditions for the existence of a biorthonormal basis composed of eigenvectors of non-Hermitian operators. As an illustration, we examine these conditions in the case of normal operators. We also provide a generalization of the conditions which is applicable to non-diagonalizable operators by considering not only eigenvectors but also all root vectors.Comment: 6 pages, no figures; (v2) minor revisions based on the comment quant-ph/0603096; (v3) presentation improved, final version to appear in Journal of Physics

    General Aspects of PT-Symmetric and P-Self-Adjoint Quantum Theory in a Krein Space

    Get PDF
    In our previous work, we proposed a mathematical framework for PT-symmetric quantum theory, and in particular constructed a Krein space in which PT-symmetric operators would naturally act. In this work, we explore and discuss various general consequences and aspects of the theory defined in the Krein space, not only spectral property and PT symmetry breaking but also several issues, crucial for the theory to be physically acceptable, such as time evolution of state vectors, probability interpretation, uncertainty relation, classical-quantum correspondence, completeness, existence of a basis, and so on. In particular, we show that for a given real classical system we can always construct the corresponding PT-symmetric quantum system, which indicates that PT-symmetric theory in the Krein space is another quantization scheme rather than a generalization of the traditional Hermitian one in the Hilbert space. We propose a postulate for an operator to be a physical observable in the framework.Comment: 32 pages, no figures; explanation, discussion and references adde

    The superfield quantisation of a superparticle action with an extended line element

    Get PDF
    A massive superparticle action based on the generalised line element in N = 1 global superspace is quantised canonically. A previous method of quantising this action, based on a Fock space analysis, showed that states existed in three supersymmetric multiplets, each of a different mass. The quantisation procedure presented uses the single first class constraint as an operator condition on a general N = 1 superwavefunction. The constraint produces coupled equations of motion for the component wavefunctions. Transformations of the component wavefunctions are derived that decouple the equations of motion and partition the resulting wavefunctions into three separate supermultiplets. Unlike previous quantisations of superparticle actions in N = 1 global superspace, the spinor wavefunctions satisfy the Dirac equation and the vector wavefunctions satisfy the Proca equation. The off-shell closure of the commutators of the supersymmetry transformations, that include mass parameters, are derived by the introduction of auxiliary wavefunctions. To avoid the ghosts arising in a previous Fock space quantisation an alternative conjugation is used in the definition of the current, based on a Krein space approach

    On elements of the Lax-Phillips scattering scheme for PT-symmetric operators

    Full text link
    Generalized PT-symmetric operators acting an a Hilbert space H\mathfrak{H} are defined and investigated. The case of PT-symmetric extensions of a symmetric operator SS is investigated in detail. The possible application of the Lax-Phillips scattering methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators

    Space of State Vectors in PT Symmetrical Quantum Mechanics

    Get PDF
    Space of states of PT symmetrical quantum mechanics is examined. Requirement that eigenstates with different eigenvalues must be orthogonal leads to the conclusion that eigenfunctions belong to the space with an indefinite metric. The self consistent expressions for the probability amplitude and average value of operator are suggested. Further specification of space of state vectors yield the superselection rule, redefining notion of the superposition principle. The expression for the probability current density, satisfying equation of continuity and vanishing for the bound state, is proposed.Comment: Revised version, explicit expressions for average values and probability amplitude adde

    PT symmetry, Cartan decompositions, Lie triple systems and Krein space related Clifford algebras

    Full text link
    Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie triple structure is found and an interpretation as PT-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space related J-selfadjoint extensions for PTQM setups with ultra-localized potentials.Comment: 11 page

    Hilbert Space Structures on the Solution Space of Klein-Gordon Type Evolution Equations

    Full text link
    We use the theory of pseudo-Hermitian operators to address the problem of the construction and classification of positive-definite invariant inner-products on the space of solutions of a Klein-Gordon type evolution equation. This involves dealing with the peculiarities of formulating a unitary quantum dynamics in a Hilbert space with a time-dependent inner product. We apply our general results to obtain possible Hilbert space structures on the solution space of the equation of motion for a classical simple harmonic oscillator, a free Klein-Gordon equation, and the Wheeler-DeWitt equation for the FRW-massive-real-scalar-field models.Comment: 29 pages, slightly revised version, accepted for publication in Class. Quantum Gra

    The PT-symmetric brachistochrone problem, Lorentz boosts and non-unitary operator equivalence classes

    Full text link
    The PT-symmetric (PTS) quantum brachistochrone problem is reanalyzed as quantum system consisting of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this specific setup as subsystem of a larger Hermitian system, we find non-unitary operator equivalence classes (conjugacy classes) as natural ingredient which contain at least one Dirac-Hermitian representative. With the help of a geometric analysis the compatibility of the vanishing passage time solution of a PTS brachistochrone with the Anandan-Aharonov lower bound for passage times of Hermitian brachistochrones is demonstrated.Comment: 12 pages, 2 figures, strongly extended versio
    corecore