We provide a mathematical framework for PT-symmetric quantum theory, which is
applicable irrespective of whether a system is defined on R or a complex
contour, whether PT symmetry is unbroken, and so on. The linear space in which
PT-symmetric quantum theory is naturally defined is a Krein space constructed
by introducing an indefinite metric into a Hilbert space composed of square
integrable complex functions in a complex contour. We show that in this Krein
space every PT-symmetric operator is P-Hermitian if and only if it has
transposition symmetry as well, from which the characteristic properties of the
PT-symmetric Hamiltonians found in the literature follow. Some possible ways to
construct physical theories are discussed within the restriction to the class
K(H).Comment: 8 pages, no figures; Refs. added, minor revisio