40 research outputs found

    Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes

    Get PDF
    Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry experiments. Formation and decomposition of M(hfa)4 (M=Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -ΔHa=(57±3)kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of 165Hf, for which conflicting values appear in the literature, was measured to be (73.9±0.8)s. Provided that samples suitable for α-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates ( e.g. , transactinide isotopes) in completely new chemical systems, e.g. , as metal complexes with organic ligands as used here or as organometallic compound

    Nuclear track microfilters: gas separation ability and β-radiation stability

    No full text
    Nuclear track microfilters were produced by irradiating the polyimide foil UPILEX with highly energetic heavy ions and subsequent etching with sodium hypochlorite solution. Pore diameters and shape were investigated by scanning electron microscopy and a replica technique where the pores were electrochemically filled with metal. The results show that it is possible to form straight cylindrical pores with diameters in the range of 100 nm. The flow rate of air through the microfilters was determined. It turned out to be a linear function of the pore diameter at this pore size. With increasing pressure, the flow rate increases. At a certain level, the increase becomes non-linear, almost exponential. It can be assumed that this is due to stress-induced deformation of the polymer with an increase in the pore diameter. With the model system carbon monoxide and carbon dioxide the microfilters were tested for their ability for gas separation. Gas chromatographic measurements show that carbon monoxide penetrates faster through the microfilter, rendering gas separation possible. Possible applications of such microfilters for separating gases include radiation environment such as fusion reactors. For testing the β-radiation stability, the microfilters were stored in tritium gas. The microfilters appeared to be radiation resistant. After the storage time, no changes in the microfilter properties were found
    corecore