72 research outputs found
Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)
This work has been supported by Bristol Research into Alzheimer’s and Care of the Elderly (BRACE), the Sigmund Gestetner Trust Fund (University of Bristol), the Alzheimer’s Society and the Alumni of the University of Bristol. K.C. and D.J.W. were supported by UK Wellcome Trust-MRC Neurodegenerative Disease Initiative Programme. J.H.Y. was supported by the Korea-UK Alzheimer’s Research Consortium Programme under the Korean Ministry of Health and Welfare. T.M.P. and S.C. were supported by Bristol-Chonnam Frontier Programme under the Chonnam National University Hospital. K.C. was supported by the Wolfson Research Merit Award and Royal Society, London.This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer’s disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3β (GSK3β) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging.Publisher PDFPeer reviewe
K-252a and staurosporine selectively block autophosphorylation of neurotrophin receptors and neurotrophin-mediated responses.
The same receptor tyrosine kinase (RTK) can mediate strikingly different biological responses in a fibroblast as opposed to a neuron. We have compared the rapidly induced tyrosine phosphorylations mediated by various RTKs in both NIH3T3 fibroblasts and in the PC12 neuronal precursor cell line and found that each RTK induces a distinct pattern of protein tyrosine phosphorylations in the two cell types. These findings are consistent with a model in which various cell types present a given RTK with different menus of signal transduction components, allowing the same RTK to elicit fundamentally distinct biological responses. Although there are obvious overlaps in the tyrosine phosphorylations induced by different RTKs in the same cell, there are also clear differences. The attempt to dissect these differences revealed that the kinase inhibitors K-252a and staurosporine inhibit RTK autophosphorylation and thus the biological consequences of receptor/ligand interaction. These inhibitors displayed substantially greater specificity for a subset of RTKs (including the neurotrophin receptors) than for other RTKs and acted as remarkably selective blockers of neurotrophin action in both neuronal and nonneuronal cells. A potential therapeutic application for these inhibitors is discussed
Human and rat brain-derived neurotrophic factor and neurotrophin-3: Gene structures, distributions, and chromosomal localizations
The development and maintenance of the vertebrate nervous system depends upon neuronal survival proteins known as neurotrophic factors. Nerve growth factor (NGF) remains the best characterized neurotrophic molecule. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are two recently cloned neurotrophic factors that are homologous to NGF. Here we describe the molecular cloning of the human and rat genes encoding BDNF, as well as the isolation of the human NT-3 gene. On the basis of comparison of our genomic and cDNA clones with those of previously isolated BDNF and NT-3 genes and cDNAs, we make inferences about the structures of processed transcripts derived from the neurotrophin genes and the protein precursors they encode. We demonstrate that the mature form of BDNF is identical in all mammals examined, and that the same is true of the mature form of NT-3. Furthermore, the respective tissue-distributions and neuronal specificities of NT-3 and BDNF are also conserved among mammals. Finally, we localize the gene encoding human BDNF (gene symbol designated BDNF) to chromosome 11, band p13, and the gene encoding human NT-3 (gene symbol designated NTF3) to chromosome 12, band p13
- …