170 research outputs found

    The Ori-Soen time machine

    Get PDF
    Ori and Soen have proposed a spacetime which has closed causal curves on the boundary of a region of normal causality, all within a region where the weak energy condition (positive energy density) is satisfied. I analyze the causal structure of this spacetime in some simplified models, show that the Cauchy horizon is compactly generated, and argue that any attempt to build such a spacetime with normal matter might lead to singular behavior where the causality violation would otherwise take place.Comment: 5 pages, RevTeX, 7 figures with epsf, miscellaneous clarifications in v2, minor updates to correspond to version to appear in PR

    High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions

    Get PDF
    The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities

    Marked Differences in Human Melanoma Antigen-Specific T Cell Responsiveness after Vaccination Using a Functional Microarray

    Get PDF
    BACKGROUND: In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect. METHODS AND FINDINGS: In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC) together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNγ and TNFα did so. CONCLUSION: Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome

    Surface stresses on a thin shell surrounding a traversable wormhole

    Full text link
    We match an interior solution of a spherically symmetric traversable wormhole to a unique exterior vacuum solution, with a generic cosmological constant, at a junction interface, and the surface stresses on the thin shell are deduced. In the spirit of minimizing the usage of exotic matter we determine regions in which the weak and null energy conditions are satisfied on the junction surface. The characteristics and several physical properties of the surface stresses are explored, namely, regions where the sign of the tangential surface pressure is positive and negative (surface tension) are determined. This is done by expressing the tangential surface pressure as a function of several parameters, namely, that of the matching radius, the redshift parameter, the surface energy density and of the generic cosmological constant. An equation governing the behavior of the radial pressure across the junction surface is also deduced.Comment: 24 pages, 11 figures, LaTeX2e, IOP style files. Accepted for publication in Classical and Quantum Gravity. V2: Four references added, now 25 page

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    Effects of denosumab in Japanese patients with rheumatoid arthritis treated with conventional antirheumatic drugs: 36-month extension of a Phase III study

    Get PDF
    Objective. To evaluate the safety and efficacy of long-term denosumab 60 mg every 6 months (Q6M) or every 3 months (Q3M) in patients with rheumatoid arthritis (RA). Methods. This 12-month, randomized, double-blind, placebo-controlled, multicenter, phase III trial with an open-label extension period from 12 to 36 months (DESIRABLE) enrolled Japanese patients with RA treated with placebo (P) for 12 months followed by either denosumab Q6M (P/Q6M) or denosumab Q3M (P/Q3M) for 24 months; denosumab Q6M for 36 months (Q6M/Q6M); or denosumab Q3M for 36 months (Q3M/Q3M). Efficacy was assessed by van der Heijde modified total Sharp score (mTSS), bone erosion score (BES), and joint space narrowing (JSN) score. Results. Long-term treatment better maintained mTSS and BES suppression in the P/Q3M and Q3M/ Q3M vs P/Q6M and Q6M/Q6M groups; changes from baseline in total mTSS (standard error) at 36 months were 2.8 (0.4) and 1.7 (0.3) vs 3.0 (0.4) and 2.4 (0.3), respectively, and corresponding changes in BES were 1.3 (0.2) and 0.4 (0.2) vs 1.4 (0.2) and 1.1 (0.2), respectively. No JSN effect was observed. Bone mineral density consistently increased in all groups after denosumab initiation, regardless of concomitant glucocorticoid administration. Serum C-terminal telopeptide of type I collagen decreased rapidly at 1 month postdenosumab administration (in both the initial 12-month [Q3M and Q6M groups] and long-term treatment [P/Q3M and P/Q6M groups] phases). Adverse event incidence leading to study drug discontinuation was similar across treatment groups. Conclusion. Denosumab treatment maintained inhibition of progression of joint destruction up to 36 months. Based on effects on BES progression, higher dosing frequency at an earlier treatment stage may be needed to optimize treatment. Denosumab was generally well tolerated. (ClinicalTrials.gov: NCT01973569).Pathophysiology and treatment of rheumatic disease

    Rotating Black Branes in the presence of nonlinear electromagnetic field

    Full text link
    In this paper, we consider a class of gravity whose action represents itself as a sum of the usual Einstein-Hilbert action with cosmological constant and an U(1)U(1) gauge field for which the action is given by a power of the Maxwell invariant. We present a class of the rotating black branes with Ricci flat horizon and show that the presented solutions may be interpreted as black brane solutions with two event horizons, extreme black hole and naked singularity provided the parameters of the solutions are chosen suitably. We investigate the properties of the solutions and find that for the special values of the nonlinear parameter, the solutions are not asymptotically anti-deSitter. At last, we obtain the conserved quantities of the rotating black branes and find that the nonlinear source effects on the electric field, the behavior of spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ

    Detection and Characterizationof Cellular Immune Responses Using Peptide–MHC Microarrays

    Get PDF
    The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide–MHC complexes for the rapid identification, isolation, activation, and characterization of multiple antigen-specific populations of T cells. CD4(+) or CD8(+) lymphocytes can be captured in accordance with their ligand specificity using an array of peptide–MHC complexes printed on a film-coated glass surface. We have characterized the specificity and sensitivity of a peptide–MHC array using labeled lymphocytes from T cell receptor transgenic mice. In addition, we were able to use the array to detect a rare population of antigen-specific T cells following vaccination of a normal mouse. This approach should be useful for epitope discovery, as well as for characterization and analysis of multiple epitope-specific T cell populations during immune responses associated with viral and bacterial infection, cancer, autoimmunity, and vaccination

    Peptide-MHC Cellular Microarray with Innovative Data Analysis System for Simultaneously Detecting Multiple CD4 T-Cell Responses

    Get PDF
    Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells.The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings

    Invasive fungal disease in PICU: epidemiology and risk factors

    Get PDF
    Candida and Aspergillus spp. are the most common agents responsible for invasive fungal infections in children. They are associated with a high mortality and morbidity rate as well as high health care costs. An important increase in their incidence has been observed during the past two decades. In infants and children, invasive candidiasis is five times more frequent than invasive aspergillosis. Candida sp. represents the third most common agent found in healthcare-associated bloodstream infections in children. Invasive aspergillosis is more often associated with hematological malignancies and solid tumors. Recommendations concerning prophylactic treatment for invasive aspergillosis have been recently published by the Infectious Diseases Society of America. Candida albicans is the main Candida sp. associated with invasive candidiasis in children, even if a strong trend toward the emergence of Candida non-albicans has been observed. The epidemiology and the risk factors for invasive fungal infections are quite different if considering previously healthy children hospitalized in the pediatric intensive care unit, or children with a malignancy or a severe hematological disease (leukemia). In children, the mortality rate for invasive aspergillosis is 2.5 to 3.5 higher than for invasive candidiasis (respectively 70% vs. 20% and 30%)
    corecore