85 research outputs found
Solar Gamma Rays Powered by Secluded Dark Matter
Secluded dark matter models, in which WIMPs annihilate first into metastable
mediators, can present novel indirect detection signatures in the form of gamma
rays and fluxes of charged particles arriving from directions correlated with
the centers of large astrophysical bodies within the solar system, such as the
Sun and larger planets. This naturally occurs if the mean free path of the
mediator is in excess of the solar (or planetary) radius. We show that existing
constraints from water Cerenkov detectors already provide a novel probe of the
parameter space of these models, complementary to other sources, with
significant scope for future improvement from high angular resolution gamma-ray
telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator
decays are also capable of contributing a significant solar system component to
the spectrum of energetic electrons and positrons, a possibility which can be
tested with the directional and timing information of PAMELA and Fermi.Comment: 22 pages, 3 figure
Dissecting and reprogramming the folding and assembly of tandem-repeat proteins.
Studying protein folding and protein design in globular proteins presents significant challenges because of the two related features, topological complexity and co-operativity. In contrast, tandem-repeat proteins have regular and modular structures composed of linearly arrayed motifs. This means that the biophysics of even giant repeat proteins is highly amenable to dissection and to rational design. Here we discuss what has been learnt about the folding mechanisms of tandem-repeat proteins. The defining features that have emerged are: (i) accessibility of multiple distinct routes between denatured and native states, both at equilibrium and under kinetic conditions; (ii) different routes are favoured for folding compared with unfolding; (iii) unfolding energy barriers are broad, reflecting stepwise unravelling of an array repeat by repeat; (iv) highly co-operative unfolding at equilibrium and the potential for exceptionally high thermodynamic stabilities by introducing consensus residues; (v) under force, helical-repeat structures are very weak with non-co-operative unfolding leading to elasticity and buffering effects. This level of understanding should enable us to create repeat proteins with made-to-measure folding mechanisms, in which one can dial into the sequence the order of repeat folding, number of pathways taken, step size (co-operativity) and fine-structure of the kinetic energy barriers.We acknowledge funding from the Medical Research Council of the UK (grant
G1002329) and the Leverhulme Trust. AP is funded by a BBSRC Doctoral Training
Program studentship. LSI acknowledges support of a Fellowship from the Medical
Research Foundation.This is the accepted manuscript. The final version is available at http://www.biochemsoctrans.org/content/43/5/881
Dark Stars and Boosted Dark Matter Annihilation Rates
Dark Stars (DS) may constitute the first phase of stellar evolution, powered
by dark matter (DM) annihilation. We will investigate here the properties of DS
assuming the DM particle has the required properties to explain the excess
positron and elec- tron signals in the cosmic rays detected by the PAMELA and
FERMI satellites. Any possible DM interpretation of these signals requires
exotic DM candidates, with an- nihilation cross sections a few orders of
magnitude higher than the canonical value required for correct thermal relic
abundance for Weakly Interacting Dark Matter can- didates; additionally in most
models the annihilation must be preferentially to lep- tons. Secondly, we study
the dependence of DS properties on the concentration pa- rameter of the initial
DM density profile of the halos where the first stars are formed. We restrict
our study to the DM in the star due to simple (vs. extended) adiabatic
contraction and minimal (vs. extended) capture; this simple study is sufficient
to illustrate dependence on the cross section and concentration parameter. Our
basic results are that the final stellar properties, once the star enters the
main sequence, are always roughly the same, regardless of the value of boosted
annihilation or concentration parameter in the range between c=2 and c=5:
stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for
the minimal DM models considered here; additional DM would lead to more massive
dark stars). However, the lifetime, final mass, and final luminosity of the DS
show some dependence on boost factor and concentration parameter as discussed
in the paper.Comment: 37 pages, 11 figure
PREDICTORS OF HYPERTENSION
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74570/1/j.1749-6632.1978.tb25565.x.pd
A systematic search strategy identifies cubilin as independent prognostic marker for renal cell carcinoma
There is an unmet clinical need for better prognostic and diagnostic tools for renal cell carcinoma (RCC).
Human Protein Atlas data resources, including the transcriptomes and proteomes of normal and malignant human tissues, were searched for RCC-specific proteins and cubilin (CUBN) identified as a candidate. Patient tissue representing various cancer types was constructed into a tissue microarray ( = 940) and immunohistochemistry used to investigate the specificity of CUBN expression in RCC as compared to other cancers. Two independent RCC cohorts ( = 181; = 114) were analyzed to further establish the sensitivity of CUBN as RCC-specific marker and to explore if the fraction of RCCs lacking CUBN expression could predict differences in patient survival.
CUBN was identified as highly RCC-specific protein with 58% of all primary RCCs staining positive for CUBN using immunohistochemistry. In venous tumor thrombi and metastatic lesions, the frequency of CUBN expression was increasingly lost. Clear cell RCC (ccRCC) patients with CUBN positive tumors had a significantly better prognosis compared to patients with CUBN negative tumors, independent of T-stage, Fuhrman grade and nodal status (HR 0.382, CI 0.203–0.719, = 0.003).
CUBN expression is highly specific to RCC and loss of the protein is significantly and independently associated with poor prognosis. CUBN expression in ccRCC provides a promising positive prognostic indicator for patients with ccRCC. The high specificity of CUBN expression in RCC also suggests a role as a new diagnostic marker in clinical cancer differential diagnostics to confirm or rule out RCC.This work was supported by the Swedish Cancer Society and the Knut and Alice Wallenberg Foundation. The work of DJH and GDS was funded by the Chief Scientist Office (grant number ETM37), Renal Cancer Research Fund and Kidney Cancer Scotland
The human secretome
The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood
Impact of inactivity and exercise on the vasculature in humans
The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk
- …