374 research outputs found

    Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis

    Get PDF
    A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline

    Cardiovascular response to postural perturbations of different intensities in healthy young adults

    Get PDF
    The ability to regain control of balance is vital in limiting falls and injuries. Little is known regarding how the autonomic nervous system responds during recovery from balance perturbations of different intensities. The purpose of this study was to examine the cardiovascular response following a standing balance perturbation of varying intensities, quantify cardiac baroreflex sensitivity (cBRS) during standing perturbations, and to establish the stability of the cardiac baroreflex during quiet standing before and after balance disturbances. Twenty healthy participants experienced three different perturbation intensity conditions that each included 25 brief posteriorly-directed perturbations, 8–10 s apart. Three perturbation intensity conditions (low, medium, high) were given in random order. Physiological data were collected in quiet stance for 5 min before testing (Baseline) and again after the perturbation conditions (Recovery) to examine baroreflex stability. Beat-to-beat heart rate (HR) and systolic blood pressure (SBP) analysis post-perturbation indicated an immediate acceleration of the HR for 1–2 s, with elevated SBP 4–5 s post-perturbation. Heart rate changes were greatest in the medium (p = 0.035) and high (p = 0.012) intensities compared to low, while there were no intensity-dependent changes in SBP. The cBRS was not intensity-dependent (p = 0.402) but when perturbation conditions were combined, cBRS was elevated compared to Baseline (p = 0.046). The stability of baseline cBRS was excellent (ICC = 0.896) between quiet standing conditions. In summary, HR, but not SBP or cBRS were intensity-specific during postural perturbations. This was the first study to examine cardiovascular response and cBRS to postural perturbations

    Mechanism for export of sediment-derived iron in an upwelling regime

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L03601, doi:10.1029/2011GL050366.Model simulations performed with a three-dimensional, high-resolution, process study ocean model of eastern boundary upwelling systems are used to describe a mechanism that efficiently transports sediment-derived dissolved iron offshore in the subsurface through the bottom boundary layer (BBL) during downwelling-favorable wind events. In the model, sediment-derived iron accumulates in the BBL on the outer shelf when the winds are upwelling-favorable. When the wind reverses, the iron-laden BBL is mixed into the water column and transported offshore along isopycnals that intersect the bottom. Depending on the frequency of wind reversal, between 10–50% of the shelf sediment-derived iron flux is exported offshore through this previously unidentified subsurface pathway. If this mechanism operates on all coastal upwelling regimes, the global export of sediment-derived iron to the open ocean would be equivalent to ten times larger than the estimated source of dissolved iron from aerosols.NSF supported this work.2012-08-1

    Towards integration of research and monitoring at forest ecosystems in Europe

    Get PDF
    Aim of study: The main aim of the work was to summarize availability, quality and comparability of on-going European Research and Monitoring Networks (ERMN), based on the results of a COST FP0903 Action questionnaire carried out in September 2010 and May 2012. Area of study: The COST Action FP0903 involves 29 European countries and 4 non-COST institutions from USA, Morocco and Tunisia. In this study, the total of 22 replies to the questionnaire from 18 countries were included. Materials and methods: Based on the feedback from the Action FP0903 countries, the most popular European Networks were identified. Thereafter, the access to the network database, available quality assurance/quality control procedures and publication were described. Finally, the so-called “Supersites” concept, defined as a “highly instrumented research infrastructure, for both research and monitoring of soil-plant-atmosphere interactions” was discussed. Main results: The result of the survey indicate that the vast majority of the Action FP0903 countries participate in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forest (ICP Forest). The multi-disciplinary International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICPIM) is the second most widespread forest programme. Research highlights: To fully understand biochemical cycles in forest ecosystems, long-term monitoring is needed. Hence, a network of “Supersites”, is proposed. The application of the above infrastructure can be an effective way to attain a better integration of research and monitoring networks at forest sites in Europ

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Molecular Characterization and Patient Outcome of Melanoma Nodal Metastases and an Unknown Primary Site

    Get PDF
    Background Melanoma of unknown primary site (MUP) is not a completely understood entity with nodal metastases as the most common first clinical manifestation. The aim of this multicentric study was to assess frequency and type of oncogenic BRAF/NRAS/KIT mutations in MUP with clinically detected nodal metastases in relation to clinicopathologic features and outcome. Materials and Methods We analyzed series of 103 MUP patients (period: 1992-2010) after therapeutic lymphadenectomy (LND): 40 axillary, 47 groin, 16 cervical, none treated with BRAF inhibitors. We performed molecular characterization of BRAF/NRAS/KIT mutational status in nodal metastases using direct sequencing of respective coding sequences. Median follow-up time was 53 months. Results BRAF mutations were detected in 55 cases (53 %) (51 V600E, 93 %; 4 others, 7 %), and mutually exclusive NRAS mutations were found in 14 cases (14 %) (7 p.Q61R, 4 p.Q61K, 2 p.Q61H, 1 p.Q13R). We have not detected any mutations in KIT. The 5-year overall survival (OS) was 34 %; median was 24 months. We have not found significant correlation between mutational status (BRAF/NRAS) and OS; however, for BRAF or NRAS mutated melanomas we observed significantly shorter disease-free survival (DFS) when compared with wild-type melanoma patients (p = .04; 5-year DFS, 18 vs 19 vs 31 %, respectively). The most important factor influencing OS was number of metastatic lymph nodes >1 (p = .03). Conclusions Our large study on molecular characterization of MUP with nodal metastases showed that MUPs had molecular features similar to sporadic non-chronic-sun-damaged melanomas. BRAF/NRAS mutational status had negative impact on DFS in this group of patients. These observations might have potential implication for molecular-targeted therapy in MUPs

    Beliefs about bad people are volatile

    Get PDF
    People form moral impressions rapidly, effortlessly and from a remarkably young age1,2,3,4,5. Putatively \u2018bad\u2019 agents command more attention and are identified more quickly and accurately than benign or friendly agents5,6,7,8,9,10,11,12. Such vigilance is adaptive, but can also be costly in environments where people sometimes make mistakes, because incorrectly attributing bad character to good people damages existing relationships and discourages forming new relationships13,14,15,16. The ability to accurately infer the moral character of others is critical for healthy social functioning, but the computational processes that support this ability are not well understood. Here, we show that moral inference is explained by an asymmetric Bayesian updating mechanism in which beliefs about the morality of bad agents are more uncertain (and therefore more volatile) than beliefs about the morality of good agents. This asymmetry seems to be a property of learning about immoral agents in general, as we also find greater uncertainty for beliefs about the non-moral traits of bad agents. Our model and data reveal a cognitive mechanism that permits flexible updating of beliefs about potentially threatening others, a mechanism that could facilitate forgiveness when initial bad impressions turn out to be inaccurate. Our findings suggest that negative moral impressions destabilize beliefs about others, promoting cognitive flexibility in the service of cooperative but cautious behaviour

    Home-based music therapy - a systematic overview of settings and conditions for an innovative service in healthcare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Almost every Western healthcare system is changing to make their services more centered around out-patient care. In particular, long-term or geriatric patients who have been discharged from the hospital often require home-based care and therapy. Therefore, several programs have been developed to continue the therapeutic process and manage the special needs of patients after discharge from hospital. Music therapy has also moved into this field of healthcare service by providing home-based music therapy (HBMT) programs. This article reviews and summarizes the settings and conditions of HBMT for the first time.</p> <p>Methods</p> <p>The following databases were used to find articles on home-based music therapy: AMED, CAIRSS, EMBASE, MEDLINE, PsychINFO, and PSYNDEX. The search terms were "home-based music therapy" and "mobile music therapy". Included articles were analyzed with respect to participants as well as conditions and settings of HBMT. Furthermore, the date of publication, main outcomes, and the design and quality of the studies were investigated.</p> <p>Results</p> <p>A total of 20 international publications, 11 clinical studies and nine reports from practice, mainly from the United States (n = 8), were finally included in the qualitative synthesis. Six studies had a randomized controlled design and included a total of 507 patients. The vast majority of clients of HBMT are elderly patients living at home and people who need hospice and palliative care. Although settings were heterogeneous, music listening programs played a predominant role with the aim to reduce symptoms like depression and pain, or to improve quality of life and the relationship between patients and caregivers as primary endpoints.</p> <p>Conclusions</p> <p>We were able to show that HBMT is an innovative service for future healthcare delivery. It fits with the changing healthcare system and its conditions but also meets the therapeutic needs of the increasing number of elderly and severely impaired people. Apart from music therapists, patients and their families HBMT is also interesting as a blueprint for home based care for other groups of caregivers.</p
    • 

    corecore