144 research outputs found

    Ethnomedicinal Importance of Pteridophytes Used by Reang tribe of Tripura, North East India

    Get PDF
    The present study mainly focuses on the ethnomedicinal importance of Pteridophytic floras used by the Reang tribes of Tripura state, India. As many as 16 pteridophytic plants species belonging to 14 genera and 10 families are presented in this research article. The botanical name, family name, vernacular name, habit, and their ethnomedicinal uses are provided

    Indigenous Knowledge on Healthcare Practices by the Reang Tribe of Dhalai District of Tripura, North East India

    Get PDF
    The present study aimed to prepare an inventory of ethnomedicinal plants used by the Reang tribe Dhalai district of Tripura state, India. Reangs are mostly residing in deep forest and depend on their own traditional health care system. The survey was conducted during 2003 to 2004 in the different villages of Dhalai district of the state covering all the seasons. In the present work a total of 58 medicinal plants species belonging to 57 genera and 39 families are presented. Out of the total collection, in maximum cases leaves (48.28%) are used which is followed by root/rhizome (29.31%), bark (10.34%), fruit/seed (8.62%), stem (3.45%) and whole plant (1.72%), against different ailments. The collected plants are mostly used in blood coagulation, cough and cold, fever and headache, diarrhoea and dysentery, stomach problem and gastritis, bone fracture and sprains, carbuncle, jaundice, leucorrhoe, rheumatism, ringworm etc. Plant parts used, their preparation, and doses are discussed along with the family and local names of the collected herbs

    Antigenic variability in Neuraminidase protein of Influenza A/H3N2 vaccine strains (1968 – 2009)

    Get PDF
    Antigenic drift and shift involving the surface proteins of Influenza virus gave rise to new strains that caused epidemics affecting millions of people worldwide over the last hundred years. Variations in the membrane proteins like Hemagglutinin (HA) and Neuraminidase (NA) necessitates new vaccine strains to be updated frequently and poses challenge to effective vaccine design. Though the HA protein, the primary target of the human immune system, has been well studied, reports on the antigenic variability in the other membrane protein NA are sparse. In this paper we investigate the molecular basis of antigenic drift in the NA protein of the Influenza A/H3N2 vaccine strains between 1968 and 2009 and proceed to establish correlation between antigenic drift and antigen-antibody interactions. Sequence alignments and phylogenetic analyses were carried out and the antigenic variability was evaluated in terms of antigenic distance. To study the effects of antigenic drift on the protein structures, 3D structure of NA from various strains were predicted. Also, rigid body docking protocol has been used to study the interactions between these NA proteins and antibody Mem5, a 1998 antibody

    Trend analysis and forecasting coconut production in Assam

    Get PDF
    ---------------------

    Transmission dynamics of novel influenza A/H1N1 2009 outbreak in a residential school in India

    Get PDF
    Transmission dynamics of an outbreak of novel influenza A/H1N1 (2009) in June-July 2009 in a residential school in Maharashtra, India has been studied. A mathematical model of the type susceptible-exposedinfectious- asymptomatic-recovered has been adopted for the purpose. Analyses of epidemiological data revealed that close clustering within population resulted in high transmissibility with basic reproduction number R0 = 2.61 and transmission rate (β) being 0.001566. Model has successfully described the dynamics of transmission in a residential school setting and helped in ascertaining the epidemiological parameters for asymptomatic cases and the effectiveness of the control measures. Our study presents a framework for studying similar outbreaks of influenza involving clustered populations

    Effect of GNP/Ni-TiO2 Nanocomposite Coated Copper Surfaces Fabricated by Electro Chemical Deposition under Nucleate Pool Boiling Regime: A Comprehensive Experimental Study

    Get PDF
    Current study presents an experimental analysis of nucleate pool boiling on the GNP/Ni-TiO2 (GNP-graphene nano particle) nano-composite coated copper surfaces. In order to produce the microporous surfaces, a two-step electro-deposition process is used. This deposition results in the formation of a modified surface structure, and various surface morphological characteristics of this modified structure, like wettability, roughness and surface structure are studied. The results reveal an improvement in CHF (critical heat flux) and BHTC (boiling heat transfer coefficient) in case of GNP/Ni-TiO2 coated surfaces. The main elements influencing the improved heat transfer of the GNP/Ni-TiO2nano-composite coating are its increased wettability, roughness, and high thermal conductivity. The SNCCC (superhydrophilic nano-composite coated copper) surfaces have the maximum BHTC of 97.52 (kW/m2K) and CHF of 2043 (kW/m2), which are 93% and 88% higher than the base Cu surfaces respectively. Here, it is analysed how the performance of SNCCC surfaces are enhanced by the impact of different parameters, like the roughness of the surface and wettability. The bubble characteristics at the time of boiling is noticed using a high-speed camera, and several factors such as nucleation site density, bubble departure diameter, and bubble emission frequency are statistically studied for SNCCC surfaces

    Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals

    Get PDF
    Mitome is a specialized mitochondrial genome database designed for easy comparative analysis of various features of metazoan mitochondrial genomes such as base frequency, A+T skew, codon usage and gene arrangement pattern. A particular function of the database is the automatic reconstruction of phylogenetic relationships among metazoans selected by a user from a taxonomic tree menu based on nucleotide sequences, amino acid sequences or gene arrangement patterns. Mitome also enables us (i) to easily find the taxonomic positions of organisms of which complete mitochondrial genome sequences are publicly available; (ii) to acquire various metazoan mitochondrial genome characteristics through a graphical genome browser; (iii) to search for homology patterns in mitochondrial gene arrangements; (iv) to download nucleotide or amino acid sequences not only of an entire mitochondrial genome but also of each component; and (v) to find interesting references easily through links with PubMed. In order to provide users with a dynamic, responsive, interactive and faster web database, Mitome is constructed using two recently highlighted techniques, Ajax (Asynchronous JavaScript and XML) and Web Services. Mitome has the potential to become very useful in the fields of molecular phylogenetics and evolution and comparative organelle genomics. The database is available at: http://www.mitome.info

    Genomic Diversity of a Globally Used, Live Attenuated Mycoplasma Vaccine

    Get PDF
    : The Mycoplasma synoviae live attenuated vaccine strain MS-H (Vaxsafe MS; Bioproperties Pty., Ltd., Australia) is commonly used around the world to prevent chronic infections caused by M. synoviae in birds and to minimize economic losses in the poultry industry. MS-H is a temperature-sensitive strain that is generated via the chemical mutagenesis of a virulent M. synoviae isolate, 86079/7NS. 32 single nucleotide polymorphisms have been found in the genome of MS-H compared to that of 86079/7NS, including 25 in predicted coding sequences (CDSs). There is limited information on the stability of these mutations in MS-H in vitro during the propagation of the vaccine manufacturing process or in vivo after the vaccination of chickens. Here, we performed a comparative analysis of MS-H genomes after in vitro and in vivo passages under different circumstances. Studying the dynamics of the MS-H population can provide insights into the factors that potentially affect the health of vaccinated birds. The genomes of 11 in vitro laboratory passages and 138 MS-H bird reisolates contained a total of 254 sequence variations. Of these, 39 variations associated with CDSs were detected in more than one genome (range = 2 to 62, median = 2.5), suggesting that these sequences are particularly prone to mutations. From the 25 CDSs containing previously characterized variations between MS-H and 86079/7NS, 7 were identified in the MS-H reisolates and progenies examined here. In conclusion, the MS-H genome contains individual regions that are prone to mutations that enable the restoration of the genotype or the phenotype of wild-type 86079/7NS in those regions. However, accumulated mutations in these regions are rare. IMPORTANCE Preventative measures, such as vaccination, are commonly used for the control of mycoplasmal infections in poultry. A live attenuated vaccine strain (Vaxsafe MS; MS-H; Bioproperties Pty. Ltd., Australia) is used for the prevention of disease caused by M. synoviae in many countries. However, information on the stability of previously characterized mutations in the MS-H genome is limited. In this study, we performed a comparative analysis of the whole-genome sequences of MS-H seeds used for vaccine manufacturing, commercial batches of the vaccine, cultures minimally passaged under small-scale laboratory and large-scale manufacturing conditions, MS-H reisolated from specific-pathogen-free (SPF) chickens that were vaccinated under controlled conditions, and MS-H reisolated from vaccinated commercial poultry flocks around the world. This study provides a comprehensive assessment of genome stability in MS-H after in vitro and in vivo passages under different circumstances and suggests that most of the mutations in the attenuated MS-H vaccine strain are stable

    Estimation of the friction coefficient of a nanostructured composite coating

    Get PDF
    The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate
    corecore