429 research outputs found

    Estimation of Spin-Spin Interaction by Weak Measurement Scheme

    Full text link
    Precisely knowing an interaction Hamiltonian is crucial to realize quantum information tasks, especially to experimentally demonstrate a quantum computer and a quantum memory. We propose a scheme to experimentally evaluate the spin-spin interaction for a two-qubit system by the weak measurement technique initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically confirm our proposed scheme in a specific system of a nitrogen vacancy center in diamond. This means that the weak measurement can also be taken as a concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter

    Asymptotic entanglement in 1D quantum walks with a time-dependent coined

    Full text link
    Discrete-time quantum walk evolve by a unitary operator which involves two operators a conditional shift in position space and a coin operator. This operator entangles the coin and position degrees of freedom of the walker. In this paper, we investigate the asymptotic behavior of the coin position entanglement (CPE) for an inhomogeneous quantum walk which determined by two orthogonal matrices in one-dimensional lattice. Free parameters of coin operator together provide many conditions under which a measurement perform on the coin state yield the value of entanglement on the resulting position quantum state. We study the problem analytically for all values that two free parameters of coin operator can take and the conditions under which entanglement becomes maximal are sought.Comment: 23 pages, 4 figures, accepted for publication in IJMPB. arXiv admin note: text overlap with arXiv:1001.5326 by other author

    Quantum mechanics of time travel through post-selected teleportation

    Get PDF
    This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based on post-selected teleportation (P-CTCs). We compare the theory of P-CTCs to previously proposed quantum theories of time travel: the theory is inequivalent to Deutsch's theory of CTCs, but it is consistent with path-integral approaches (which are the best suited for analyzing quantum-field theory in curved space-time). We derive the dynamical equations that a chronology-respecting system interacting with a CTC will experience. We discuss the possibility of time travel in the absence of general-relativistic closed-timelike curves, and investigate the implications of P-CTCs for enhancing the power of computation.This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based on post-selected teleportation (P-CTCs). We compare the theory of P-CTCs to previously proposed quantum theories of time travel: the theory is inequivalent to Deutsch's theory of CTCs, but it is consistent with path-integral approaches (which are the best suited for analyzing quantum-field theory in curved space-time). We derive the dynamical equations that a chronology-respecting system interacting with a CTC will experience. We discuss the possibility of time travel in the absence of general-relativistic closed-timelike curves, and investigate the implications of P-CTCs for enhancing the power of computation

    Thermodynamic formalism for dissipative quantum walks

    Full text link
    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page

    Weak Values with Decoherence

    Full text link
    The weak value of an observable is experimentally accessible by weak measurements as theoretically analyzed by Aharonov et al. and recently experimentally demonstrated. We introduce a weak operator associated with the weak values and give a general framework of quantum operations to the W operator in parallel with the Kraus representation of the completely positive map for the density operator. The decoherence effect is also investigated in terms of the weak measurement by a shift of a probe wave function of continuous variable. As an application, we demonstrate how the geometric phase is affected by the bit flip noise.Comment: 17 pages, 3 figure

    Geometrical aspects of weak measurements and quantum erasers

    Full text link
    We investigate the mechanism of weak measurement by using an interferometric framework. In order to appropriately elucidate the interference effect that occurs in weak measurement, we introduce an interferometer for particles with internal degrees of freedom. It serves as a framework common to quantum eraser and weak measurement. We demonstrate that the geometric phase, particularly the Pancharatnam phase, results from the post-selection of the internal state, and thereby the interference pattern is changed. It is revealed that the extraordinary displacement of the probe wavepackets in weak measurement is achieved owing to the Pancharatnam phase associated with post-selection.Comment: 11 pages, 4 figure

    Coined quantum walks on percolation graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line) we introduce a simple notion of quantum tunneling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero, as the percolation probability decreases to the critical point. This provides an example of fractional scaling in quantum walk dynamics.Comment: 25 pages, 14 figures; v2 expanded and improved presentation after referee comments, added extra figur

    Localization of the Grover walks on spidernets and free Meixner laws

    Full text link
    A spidernet is a graph obtained by adding large cycles to an almost regular tree and considered as an example having intermediate properties of lattices and trees in the study of discrete-time quantum walks on graphs. We introduce the Grover walk on a spidernet and its one-dimensional reduction. We derive an integral representation of the nn-step transition amplitude in terms of the free Meixner law which appears as the spectral distribution. As an application we determine the class of spidernets which exhibit localization. Our method is based on quantum probabilistic spectral analysis of graphs.Comment: 32 page

    Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific β-Glucan Display

    Get PDF
    Inhalation of fungal spores (conidia) occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-α/MIP-2 secretion by alveolar macrophages. Fungal β-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal β-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed β-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-α/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores
    corecore