We cannot perform the projective measurement of a momentum on a half line
since it is not an observable. Nevertheless, we would like to obtain some
physical information of the momentum on a half line. We define an optimality
for measurement as minimizing the variance between an inferred outcome of the
measured system before a measuring process and a measurement outcome of the
probe system after the measuring process, restricting our attention to the
covariant measurement studied by Holevo. Extending the domain of the momentum
operator on a half line by introducing a two dimensional Hilbert space to be
tensored, we make it self-adjoint and explicitly construct a model Hamiltonian
for the measured and probe systems. By taking the partial trace over the newly
introduced Hilbert space, the optimal covariant positive operator valued
measure (POVM) of a momentum on a half line is reproduced. We physically
describe the measuring process to optimally evaluate the momentum of a particle
on a half line.Comment: 12 pages, 3 figure