659 research outputs found
Innovation, generative relationships and scaffolding structures: implications of a complexity perspective to innovation for public and private interventions
The linear model of innovation has been superseded by a variety of theoretical models that view the innovation process as systemic, complex, multi-level, multi-temporal, involving a plurality of heterogeneous economic agents. Accordingly, the emphasis of the policy discourse has changed over time. The focus has shifted from the direct public funding of basic research as an engine of innovation, to the creation of markets for knowledge goods, to, eventually, the acknowledgement that knowledge transfer very often requires direct interactions among innovating actors. In most cases, policy interventions attempt to facilitate the match between “demand” and “supply” of the knowledge needed to innovate. A complexity perspective calls for a different framing, one focused on the fostering of processes characterized by multiple agency levels, multiple temporal scales, ontological uncertainty and emergent outcomes. This contribution explores what it means to design interventions in support of innovation processes inspired by a complex systems perspective. It does so by analyzing two examples of coordinated interventions: a public policy funding innovating networks (with SMEs, research centers and university), and a private initiative, promoted by a network of medium-sized mechanical engineering firms, that supports innovation by means of technology brokerage. Relying on two unique datasets recording the interactions of the organizations involved in these interventions, social network analysis and qualitative research are combined in order to investigate network dynamics and the roles of specific actors in fostering innovation processes. Then, some general implications for the design of coordinated interventions supporting innovation in a complexity perspective are drawn
Quantification of the resilience of primary care networks by stress testing the health care system
There are practically no quantitative tools for understanding how much stress a health care system can absorb before it loses its ability to provide care. We propose to measure the resilience of health care systems with respect to changes in the density of primary care providers. We develop a computational model on a 1-to-1 scale for a countrywide primary care sector based on patient-sharing networks. Nodes represent all primary care providers in a country; links indicate patient flows between them. The removal of providers could cause a cascade of patient displacements, as patients have to find alternative providers. The model is calibrated with nationwide data from Austria that includes almost all primary care contacts over 2 y. We assign 2 properties to every provider: the “CareRank” measures the average number of displacements caused by a provider’s removal (systemic risk) as well as the fraction of patients a provider can absorb when others default (systemic benefit). Below a critical number of providers, large-scale cascades of patient displacements occur, and no more providers can be found in a given region. We quantify regional resilience as the maximum fraction of providers that can be removed before cascading events prevent coverage for all patients within a district. We find considerable regional heterogeneity in the critical transition point from resilient to nonresilient behavior. We demonstrate that health care resilience cannot be quantified by physician density alone but must take into account how networked systems respond and restructure in response to shocks. The approach can identify systemically relevant providers
First record and otolith morphometric description of an adult lightfish, Ichthyococcus ovatus (Actinopterygii: Stomiiformes: Phosichthyidae), caught in the Strait of Sicily (central Mediterranean Sea)
On July 2018, one specimen ofIchthyococcus ovatus (Cocco, 1838) was caught in the Strait of Sicily during the International Bottom Trawl Survey in the Mediterranean (MEDITS). The adult I. ovatus measured 49 mm in total length and weighed 1.44 g. In this context, the presently reported study constitutes the first and deepest record of an adult of I. ovatus as well as the morphometric description of its sagittal otoliths. In addition, we provide an age estimation as well as an update of the geographical distribution of this bathypelagic species around the Mediterranean Sea. Based on the growth increments of sagittal otoliths, the estimated age was five years. Specifically, the otolith from the presently reported specimen of I. ovatus tended to be elliptic in shape related to aspect ratio and high rectangularity while circularity showed high complexity of otolith contour complexity. The absence of economic val-ue of rarely reported species may underestimate their abundance. Therefore, more studies and research surveys would be necessary to fill the information gap on the biology of these deep-water species
A case of severe dermatitis in a patient with Polycythemia Vera during cytoreductive therapy
Polycythemia Vera (PV) is a Philadelphia-negative chronic myeloproliferative neoplasm (MPN) mainly characterized by erythrocytosis. In this report we describe a case of severe cutaneous toxicity in patients with PV treated with hydroxyurea. A 72-year-old woman diagnosed with PV with V617F mutation of JAK2 performed more than 10 years before and treated with hydroxyurea plus phlebotomies and low-dose ASA for about 7 years addressed our center for the appearance of serious dermatitis at the face symptomatic for severe itch. The patient underwent a dermatology visit with diagnosis of desquamative dermatitis due to iatrogenic cause related to the use of hydroxyurea. HU was stopped for a month with no improvement after a month of wash-out. Ruxolitinib was prescribed at a dose of 20 mg per day, in order to control hypercytosis and considering the severe intolerance to hydroxyurea. Ruxolitinib allowed not only to
reduce the haematocrit, reaching the target value of 45%, and control thrombocytosis, but also to switch off the severe itch and to completely resolve skin toxicity
The Hippo Kinase Pathway: a master regulator of proliferation, development and differentiation
Hippo signaling transduction pathway is widely conserved through evolution and controls cell growth, homeostasis, apoptosis, commitment, differentiation and senescence. It consists of a conserved kinase cascade whose final targets are the transcriptional coactivator Yorkie (Yki) in Drosophila and the homologues YAP and TAZ in mammals. These transcriptional coactivators are unable to bind DNA per se, and can regulate the activity of their target genes only in association with transcription factors. In Drosophila, Yki associates with the transcription factors Sd and Hth regulating pro-proliferative and anti-apoptotic genes. In mammals instead, YAP/TAZ can associate with several distinct transcription factors. This depends from the type of signals to which cells are subjected, the cell type and the developmental stage. The transcriptional outcome resulting from this association can be either pro-apoptotic or pro-proliferative. Hippo pathway dysregulation has been associated with several pathologic conditions (tissue overgrowth, developmental defects and cancer). In particular, solid tumors show an upregulation or hyperactivation of YAP/TAZ, while several hematologic tumors are associated with YAP downregulation. This might suggest that the Hippo pathway holds the potential to be an attractive target for novel therapeutic approaches for cancer
Assessing the Stock Dynamics of Elasmobranchii off the Southern Coast of Sicily by Using Trawl Survey Data
Elasmobranchii (sharks and rays), which have peculiar and vulnerable life-history traits, are highly threatened by fishing activities. Indeed, between 53% and 71% of Mediterranean elasmobranch species are at risk of extinction. In this context, using the abundance MSY (AMSY) model, the present study provides an assessment of 20 batoids and 16 shark species in the Strait of Sicily, sampled during a bottom trawl survey from 1995 to 2020. Overall, the outputs underline a progressively improving condition for shark and ray assemblages of both shelf and eurybathic zones. As for slope-dwelling species, a horseshoe-shaped dynamic, characterized by a progressive decrease in relative harvesting pressure and an increase in relative biomass followed by an increase in fishing pressure and decrease in biomass, was detected. The dynamics of the Elasmobranchii living in the Strait of Sicily appear to be affected by changes in the fishing patterns of trawlers, showing a shift from shallow water to bathyal fishing grounds and targeting deep-water red shrimp. In this context, it seems wise to limit the impact of deep-water fisheries on Elasmobranchii by reducing fishing efforts and implementing ad hoc management measures aimed at safeguarding these vulnerable species
- …