84 research outputs found

    Hierarchical Patterns of Global Human Y-Chromosome Diversity

    Get PDF
    We examined 43 biallelic polymorphisms on the nonrecombining portion of the Y chromosome (NRY) in 50 human populations encompassing a total of 2,858 males to study the geographic structure of Y-chromosome variation. Patterns of NRY diversity varied according to geographic region and method/level of comparison. For example, populations from Central Asia had the highest levels of heterozygosity, while African populations exhibited a higher level of mean pairwise differences among haplotypes. At the global level, 36% of the total variance of NRY haplotypes was attributable to differences among populations (i.e., Phi(ST) = 0.36). When a series of AMOVA analyses was performed on different groupings of the 50 populations, high levels of among-groups variance (Phi(CT)) were found between Africans, Native Americans, and a single group containing all 36 remaining populations. The same three population groupings formed distinct clusters in multidimensional scaling plots. A nested cladistic analysis (NCA) demonstrated that both population structure processes (recurrent gene flow restricted by isolation by distance and long-distance dispersals) and population history events (contiguous range expansions and long-distance colonizations) were instrumental in explaining this tripartite division of global NRY diversity. As in our previous analyses of smaller NRY data sets, the NCA detected a global contiguous range expansion out of Africa at the level of the total cladogram. Our new results support a general scenario in which, after an early out-of-Africa range expansion, global-scale patterns of NRY variation were mainly influenced by migrations out of Asia. Two other notable findings of the NCA were (1) Europe as a "receiver" of intercontinental signals primarily from Asia, and (2) the large number of intracontinental signals within Africa. Our AMOVA analyses also supported the hypothesis that patrilocality effects are evident at local and regional scales, rather than at intercontinental and global levels. Finally, our results underscore the importance of subdivision of the human paternal gene pool and imply that caution should be exercised when using models and experimental strategies based on the assumption of panmixia

    Inferring the Demographic History of African Farmers and Pygmy Hunter–Gatherers Using a Multilocus Resequencing Data Set

    Get PDF
    The transition from hunting and gathering to farming involved a major cultural innovation that has spread rapidly over most of the globe in the last ten millennia. In sub-Saharan Africa, hunter–gatherers have begun to shift toward an agriculture-based lifestyle over the last 5,000 years. Only a few populations still base their mode of subsistence on hunting and gathering. The Pygmies are considered to be the largest group of mobile hunter–gatherers of Africa. They dwell in equatorial rainforests and are characterized by their short mean stature. However, little is known about the chronology of the demographic events—size changes, population splits, and gene flow—ultimately giving rise to contemporary Pygmy (Western and Eastern) groups and neighboring agricultural populations. We studied the branching history of Pygmy hunter–gatherers and agricultural populations from Africa and estimated separation times and gene flow between these populations. We resequenced 24 independent noncoding regions across the genome, corresponding to a total of ∌33 kb per individual, in 236 samples from seven Pygmy and five agricultural populations dispersed over the African continent. We used simulation-based inference to identify the historical model best fitting our data. The model identified included the early divergence of the ancestors of Pygmy hunter–gatherers and farming populations ∌60,000 years ago, followed by a split of the Pygmies' ancestors into the Western and Eastern Pygmy groups ∌20,000 years ago. Our findings increase knowledge of the history of the peopling of the African continent in a region lacking archaeological data. An appreciation of the demographic and adaptive history of African populations with different modes of subsistence should improve our understanding of the influence of human lifestyles on genome diversity

    In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq

    Get PDF
    Background For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. Results To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates). Conclusions Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry
    • 

    corecore