38,235 research outputs found
S-Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C-Alkylation
A tandem enzymatic strategy to enhance the scope of Calkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solventexposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5â-deoxyadenosine (ClDA) analogues modified at the 2position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants which influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecule
Multipartite Entanglement and Quantum State Exchange
We investigate multipartite entanglement in relation to the theoretical
process of quantum state exchange. In particular, we consider such entanglement
for a certain pure state involving two groups of N trapped atoms. The state,
which can be produced via quantum state exchange, is analogous to the
steady-state intracavity state of the subthreshold optical nondegenerate
parametric amplifier. We show that, first, it possesses some 2N-way
entanglement. Second, we place a lower bound on the amount of such entanglement
in the state using a novel measure called the entanglement of minimum bipartite
entropy.Comment: 12 pages, 4 figure
Probing CDM cosmology with the Evolutionary Map of the Universe survey
The Evolutionary Map of the Universe (EMU) is an all-sky survey in
radio-continuum which uses the Australian SKA Pathfinder (ASKAP). Using galaxy
angular power spectrum and the integrated Sachs-Wolfe effect, we study the
potential of EMU to constrain models beyond CDM (i.e., local
primordial non-Gaussianity, dynamical dark energy, spatial curvature and
deviations from general relativity), for different design sensitivities. We
also include a multi-tracer analysis, distinguishing between star-forming
galaxies and galaxies with an active galactic nucleus, to further improve EMU's
potential. We find that EMU could measure the dark energy equation of state
parameters around 35\% more precisely than existing constraints, and that the
constraints on and modified gravity parameters will improve up to
a factor with respect to Planck and redshift space distortions
measurements. With this work we demonstrate the promising potential of EMU to
contribute to our understanding of the Universe.Comment: 15 pages (29 with references and appendices), 6 figures and 10
tables. Matches the published version. Minimal changes from previous versio
Model-based approaches for predicting gait changes over time
Interest in automated biometrics continues to increase, but has little consideration of time which are especially important in surveillance and scan control. This paper deals with a problem of recognition by gait when time-dependent covariates are added, i.e. when or months have passed between recording of the gallery and the probe sets. Moreover, in some cases some extra covariates present as well. We have shown previously how recognition rates fall significantly when data is captured between lengthy time intervals. Under the assumption that it is possible to have some subjects from the probe for training and that similar subjects have similar changes in gait over time, we suggest predictive models of changes in gait due both to time and now to time-invariant covariates. Our extended time-dependent predictive model derives high recognition rates when time-dependent or subject-dependent covariates are added. However it is not able to cope with time-invariant covariates, therefore a new time-invariant predictive model is suggested to accommodate extra covariates. These are combined to achieve a predictive model which takes into consideration all types of covariates. A considerable improvement in recognition capability is demonstrated, showing that changes can be modelled successfully by the new approach
The Impact of Sensing Range on Spatial-Temporal Opportunity
In this paper, we study the impact of secondary user (SU) sensing range on spectrum access opportunity in cognitive radio networks. We first derive a closed-form ex- pression of spectrum access opportunity by taking into ac- count the random variations in number, locations and trans- mitted powers of primary users (PUs). Then, we show how SU sensing range affects spectrum access opportunity, and the tradeoff between SU sensing range and spectrum ac- cess opportunity is formulated as an optimization problem to maximize spectrum access opportunity. Furthermore, we prove that there exists an optimal SU sensing range which yields the maximum spectrum access opportunity, and nu- merical results validate our theoretical analysis
Asymmetric Quantum Shot Noise in Quantum Dots
We analyze the frequency-dependent noise of a current through a quantum dot
which is coupled to Fermi leads and which is in the Coulomb blockade regime. We
show that the asymmetric shot noise as function of frequency shows steps and
becomes super-Poissonian. This provides experimental access to the quantum
fluctuations of the current. We present an exact calculation for a single dot
level and a perturbative evaluation of the noise in Born approximation
(sequential tunneling regime but without Markov approximation) for the general
case of many levels with charging interaction.Comment: 5 pages, 2 figure
Molecular lesions associated with white gene mutations induced by I-R hybrid dysgenesis in Drosophila melanogaster
We have identified molecular lesions associated with six mutations, w(IR2) and w(IR4-8), of the white gene of Drosophila melanogaster. These mutations arose in flies subject to I-R hybrid dysgenesis. Four of the mutations give rise to coloured eyes and are associated with insertions of 5.4-kb elements indistinguishable from the I factor controlling I-R dysgenesis. The insertion associated with w(IR4) is at a site which, within the resolution of these experiments, is identical to that of two previously studied I factors. This appears to be a hot-spot for I factor insertion. We have compared the sites of these insertions with sequences complementary to white gene mRNA identified by Pirrotta and Bröckl. The hot-spot is in the fourth intron. The insertion carried by w(IR5) is either within, or just beyond, the last exon. The insertion carried by w(IR6) is near the junction of the first exon and first intron. The w(IR2) mutation is a derivative of w(1). It contains an insertion of I factor DNA within, or immediately adjacent to, the F-like element associated with w(1), and results in restoration of some eye colour. This insertion is just upstream of the start of the white mRNA. Mutations w(IR7) and w(IR8) are deletions removing mRNA coding sequences. Both determine a bleached white phenotype
- âŠ