10,409 research outputs found
ACE Bounds; SEMs with Equilibrium Conditions
Discussion of "Instrumental Variables: An Econometrician's Perspective" by
Guido W. Imbens [arXiv:1410.0163].Comment: Published in at http://dx.doi.org/10.1214/14-STS485 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Congenial Causal Inference with Binary Structural Nested Mean Models
Structural nested mean models (SNMMs) are among the fundamental tools for
inferring causal effects of time-dependent exposures from longitudinal studies.
With binary outcomes, however, current methods for estimating multiplicative
and additive SNMM parameters suffer from variation dependence between the
causal SNMM parameters and the non-causal nuisance parameters. Estimating
methods for logistic SNMMs do not suffer from this dependence. Unfortunately,
in contrast with the multiplicative and additive models, unbiased estimation of
the causal parameters of a logistic SNMM rely on additional modeling
assumptions even when the treatment probabilities are known. These difficulties
have hindered the uptake of SNMMs in epidemiological practice, where binary
outcomes are common. We solve the variation dependence problem for the binary
multiplicative SNMM by a reparametrization of the non-causal nuisance
parameters. Our novel nuisance parameters are variation independent of the
causal parameters, and hence allows the fitting of a multiplicative SNMM by
unconstrained maximum likelihood. It also allows one to construct true (i.e.
congenial) doubly robust estimators of the causal parameters. Along the way, we
prove that an additive SNMM with binary outcomes does not admit a variation
independent parametrization, thus explaining why we restrict ourselves to the
multiplicative SNMM
Nested Markov Properties for Acyclic Directed Mixed Graphs
Directed acyclic graph (DAG) models may be characterized in at least four
different ways: via a factorization, the d-separation criterion, the
moralization criterion, and the local Markov property. As pointed out by Robins
(1986, 1999), Verma and Pearl (1990), and Tian and Pearl (2002b), marginals of
DAG models also imply equality constraints that are not conditional
independences. The well-known `Verma constraint' is an example. Constraints of
this type were used for testing edges (Shpitser et al., 2009), and an efficient
marginalization scheme via variable elimination (Shpitser et al., 2011).
We show that equality constraints like the `Verma constraint' can be viewed
as conditional independences in kernel objects obtained from joint
distributions via a fixing operation that generalizes conditioning and
marginalization. We use these constraints to define, via Markov properties and
a factorization, a graphical model associated with acyclic directed mixed
graphs (ADMGs). We show that marginal distributions of DAG models lie in this
model, prove that a characterization of these constraints given in (Tian and
Pearl, 2002b) gives an alternative definition of the model, and finally show
that the fixing operation we used to define the model can be used to give a
particularly simple characterization of identifiable causal effects in hidden
variable graphical causal models.Comment: 67 pages (not including appendix and references), 8 figure
Betti number signatures of homogeneous Poisson point processes
The Betti numbers are fundamental topological quantities that describe the
k-dimensional connectivity of an object: B_0 is the number of connected
components and B_k effectively counts the number of k-dimensional holes.
Although they are appealing natural descriptors of shape, the higher-order
Betti numbers are more difficult to compute than other measures and so have not
previously been studied per se in the context of stochastic geometry or
statistical physics.
As a mathematically tractable model, we consider the expected Betti numbers
per unit volume of Poisson-centred spheres with radius alpha. We present
results from simulations and derive analytic expressions for the low intensity,
small radius limits of Betti numbers in one, two, and three dimensions. The
algorithms and analysis depend on alpha-shapes, a construction from
computational geometry that deserves to be more widely known in the physics
community.Comment: Submitted to PRE. 11 pages, 10 figure
Bayesian Exponential Random Graph Models with Nodal Random Effects
We extend the well-known and widely used Exponential Random Graph Model
(ERGM) by including nodal random effects to compensate for heterogeneity in the
nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and
Friel (2011) yields the basis of our modelling algorithm. A central question in
network models is the question of model selection and following the Bayesian
paradigm we focus on estimating Bayes factors. To do so we develop an
approximate but feasible calculation of the Bayes factor which allows one to
pursue model selection. Two data examples and a small simulation study
illustrate our mixed model approach and the corresponding model selection.Comment: 23 pages, 9 figures, 3 table
Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential
Funded by NERC CASE studentship . Grant Number: NE/I018417/1Peer reviewedPublisher PD
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
- …
