10,409 research outputs found

    ACE Bounds; SEMs with Equilibrium Conditions

    Full text link
    Discussion of "Instrumental Variables: An Econometrician's Perspective" by Guido W. Imbens [arXiv:1410.0163].Comment: Published in at http://dx.doi.org/10.1214/14-STS485 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Congenial Causal Inference with Binary Structural Nested Mean Models

    Full text link
    Structural nested mean models (SNMMs) are among the fundamental tools for inferring causal effects of time-dependent exposures from longitudinal studies. With binary outcomes, however, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal SNMM parameters and the non-causal nuisance parameters. Estimating methods for logistic SNMMs do not suffer from this dependence. Unfortunately, in contrast with the multiplicative and additive models, unbiased estimation of the causal parameters of a logistic SNMM rely on additional modeling assumptions even when the treatment probabilities are known. These difficulties have hindered the uptake of SNMMs in epidemiological practice, where binary outcomes are common. We solve the variation dependence problem for the binary multiplicative SNMM by a reparametrization of the non-causal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allows the fitting of a multiplicative SNMM by unconstrained maximum likelihood. It also allows one to construct true (i.e. congenial) doubly robust estimators of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parametrization, thus explaining why we restrict ourselves to the multiplicative SNMM

    Nested Markov Properties for Acyclic Directed Mixed Graphs

    Full text link
    Directed acyclic graph (DAG) models may be characterized in at least four different ways: via a factorization, the d-separation criterion, the moralization criterion, and the local Markov property. As pointed out by Robins (1986, 1999), Verma and Pearl (1990), and Tian and Pearl (2002b), marginals of DAG models also imply equality constraints that are not conditional independences. The well-known `Verma constraint' is an example. Constraints of this type were used for testing edges (Shpitser et al., 2009), and an efficient marginalization scheme via variable elimination (Shpitser et al., 2011). We show that equality constraints like the `Verma constraint' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via Markov properties and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We show that marginal distributions of DAG models lie in this model, prove that a characterization of these constraints given in (Tian and Pearl, 2002b) gives an alternative definition of the model, and finally show that the fixing operation we used to define the model can be used to give a particularly simple characterization of identifiable causal effects in hidden variable graphical causal models.Comment: 67 pages (not including appendix and references), 8 figure

    Betti number signatures of homogeneous Poisson point processes

    Full text link
    The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: B_0 is the number of connected components and B_k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centred spheres with radius alpha. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha-shapes, a construction from computational geometry that deserves to be more widely known in the physics community.Comment: Submitted to PRE. 11 pages, 10 figure

    Bayesian Exponential Random Graph Models with Nodal Random Effects

    Get PDF
    We extend the well-known and widely used Exponential Random Graph Model (ERGM) by including nodal random effects to compensate for heterogeneity in the nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and Friel (2011) yields the basis of our modelling algorithm. A central question in network models is the question of model selection and following the Bayesian paradigm we focus on estimating Bayes factors. To do so we develop an approximate but feasible calculation of the Bayes factor which allows one to pursue model selection. Two data examples and a small simulation study illustrate our mixed model approach and the corresponding model selection.Comment: 23 pages, 9 figures, 3 table

    Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism

    Get PDF
    Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
    corecore