842 research outputs found
Nonequilibrium phases in hybrid arrays with flux qubits and NV centers
We propose a startling hybrid quantum architecture for simulating a
localization-delocalization transition. The concept is based on an array of
superconducting flux qubits which are coupled to a diamond crystal containing
nitrogen-vacancy (NV) centers. The underlying description is a
Jaynes-Cummings-lattice in the strong-coupling regime. However, in contrast to
well-studied coupled cavity arrays the interaction between lattice sites is
mediated here by the qubit rather than by the oscillator degrees of freedom.
Nevertheless, we point out that a transition between a localized and a
delocalized phase occurs in this system as well. We demonstrate the possibility
of monitoring this transition in a non-equilibrium scenario, including
decoherence effects. The proposed scheme allows the monitoring of
localization-delocalization transitions in Jaynes-Cummings-lattices by use of
currently available experimental technology. Contrary to cavity-coupled
lattices, our proposed recourse to stylized qubit networks facilitates (i) to
investigate localization-delocalization transitions in arbitrary dimensions and
(ii) to tune the inter-site coupling in-situ.Comment: Version to be published in Phys. Rev.
Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3
Combining thermodynamic measurements with theoretical density functional and
thermodynamic calculations we demonstrate that the honeycomb lattice iridates
A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the
magnetism of the effective spin-orbital S = 1/2 moments can be captured by a
Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond
nearest-neighbor exchange. Experimentally, we observe an increase of the
Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for
Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the
same T_N = 15 K for both materials. Using finite-temperature functional
renormalization group calculations we show that this evolution of \theta, T_N,
the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering
structure suggested for both materials by density functional theory can be
captured within this extended HK model. Combining our experimental and
theoretical results, we estimate that Na2IrO3 is deep in the magnetically
ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to
be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and
thermodynamic calculations have been included. 6 pages of supplementary
material include
Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO_3 with R = La, Pr, Nd and Eu
We present a combined study of the thermal expansion and the thermal
conductivity of the perovskite series RCoO_3 with R = La, Nd, Pr and Eu. The
well-known spin-state transition in LaCoO_3 is strongly affected by the
exchange of the R ions due to their different ionic radii, i.e. chemical
pressure. This can be monitored in detail by measurements of the thermal
expansion, which is a highly sensitive probe for detecting spin-state
transitions. The Co ions in the higher spin state act as additional scattering
centers for phonons, therefore suppressing the phonon thermal conductivity.
Based on the analysis of the interplay between spin-state transition and heat
transport, we present a quantitative model of the thermal conductivity for the
entire series. In PrCoO_3, an additional scattering effect is active at low
temperatures. This effect arises from the crystal field splitting of the 4f
multiplet, which allows for resonant scattering of phonons between the various
4f levels.Comment: 15 pages including 5 figure
Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
We consider a numerical approach for the incompressible surface Navier-Stokes
equation. The approach is based on the covariant form and uses discrete
exterior calculus (DEC) in space and a semi-implicit discretization in time.
The discretization is described in detail and related to finite difference
schemes on staggered grids in flat space for which we demonstrate second order
convergence. We compare computational results with a vorticity-stream function
approach for surfaces with genus 0 and demonstrate the interplay between
topology, geometry and flow properties. Our discretization also allows to
handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure
Anisotropic Susceptibility of La_2-xSr_xCoO_4 related to the Spin States of Cobalt
We present a study of the magnetic susceptibility of La_2-xSr_xCoO_4 single
crystals in a doping range 0.3<=x<=0.8. Our data shows a pronounced magnetic
anisotropy for all compounds. This anisotropy is in agreement with a low-spin
ground state (S=0) of Co^3+ for x>=0.4 and a high-spin ground state (S=3/2) of
Co^2+. We compare our data with a crystal-field model calculation assuming
local moments and find a good description of the magnetic behavior for x>=0.5.
This includes the pronounced kinks observed in the inverse magnetic
susceptibility, which result from the anisotropy and low-energy excited states
of Co^2+ and are not related to magnetic ordering or temperature-dependent
spin-state transitions
Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO
In this paper, a correlation between structural and magnetic properties of Fe
implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to
the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum
annealing at 823 K results in the growth of alpha-Fe particles, but the
annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long
term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles
were formed inside ZnO with the orientation relationship of
ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a
hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy
Anisotropic susceptibilities in the honeycomb Kitaev system α−RuCl3
The magnetic insulator α−RuCl3 is a promising candidate to realize Kitaev interactions on a quasi-two-dimensional honeycomb lattice. We perform extensive susceptibility measurements on single crystals of α−RuCl3, including angle dependence of the in-plane longitudinal and transverse susceptibilities, which reveal a unidirectional anisotropy within the honeycomb plane. By comparing the experimental results to a high-temperature expansion of a Kitaev-Heisenberg-Γ spin Hamiltonian with bond anisotropy, we find excellent agreement with the observed phase shift and periodicity of the angle-resolved susceptibilities. Within this model, we show that the pronounced difference between in-plane and out-of-plane susceptibilities as well as the finite transverse susceptibility are rooted in strong symmetric off-diagonal Γ spin exchange. The Γ couplings and relationships between other terms in the model Hamiltonian are quantified by extracting relevant Curie-Weiss intercepts from the experimental data
Optimal Flying Wings: A Numerical Optimization Study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97067/1/AIAA2012-1758.pd
Creation and manipulation of entanglement in spin chains far from equilibrium
We investigate creation, manipulation, and steering of entanglement in spin
chains from the viewpoint of quantum communication between distant parties. We
demonstrate how global parametric driving of the spin-spin coupling and/or
local time-dependent Zeeman fields produce a large amount of entanglement
between the first and the last spin of the chain. This occurs whenever the
driving frequency meets a resonance condition, identified as "entanglement
resonance". Our approach marks a promising step towards an efficient quantum
state transfer or teleportation in solid state system. Following the reasoning
of Zueco et al. [1], we propose generation and routing of multipartite
entangled states by use of symmetric tree-like structures of spin chains.
Furthermore, we study the effect of decoherence on the resulting spin
entanglement between the corresponding terminal spins.Comment: 10 pages, 8 figure
- …