17 research outputs found

    Towards a consistent picture for quasi-1D organic superconductors

    Full text link
    The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6 was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disappeared. This data revealed a direct correlation between the onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low temperature, so that A goes to 0 as Tc goes to 0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica

    Expansion of the Tetragonal Magnetic Phase with Pressure in the Iron Arsenide Superconductor Ba₁₋ₓKₓFe₂As₂

    Get PDF
    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba1-xKxFe2As2 and Ba1-xNaxFe2As2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x=0.28 for Ba1-xKxFe2As2. In a prior study, an unidentified phase was discovered for x \u3c 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba1-xKxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba1-xKxFe2As2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. This reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material

    Doping Evolution of the Superconducting Gap Structure in the Underdoped Iron Arsenide Ba₁₋ₓKₓFe₂As₂ Revealed by Thermal Conductivity

    Get PDF
    The thermal conductivity Îș of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured for heat currents parallel and perpendicular to the tetragonal c axis at temperatures down to 50 mK and in magnetic fields up to 15 T. Measurements were performed on samples with compositions ranging from optimal doping (x = 0.34, Tc = 39 K) down to dopings deep into the region where antiferromagnetic order coexists with superconductivity (x = 0.16, Tc = 7 K). In zero field, there is no residual linear term in Îș(T) as T→0 at any doping, whether for in-plane or interplane transport. This shows that there are no nodes in the superconducting gap. However, as x decreases into the range of coexistence with antiferromagnetism, the residual linear term grows more and more rapidly with applied magnetic field. This shows that the superconducting energy gap develops minima at certain locations on the Fermi surface and these minima deepen with decreasing x. We propose that the minima in the gap structure arise when the Fermi surface of Ba1-xKxFe2As2 is reconstructed by the antiferromagnetic order

    From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2

    Full text link
    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes

    Manganese superoxide dismutase Ala-9Val polymorphism and risk of breast cancer in a population-based case–control study of African Americans and whites

    Get PDF
    INTRODUCTION: A polymorphism in the manganese superoxide dismutase (MnSOD) gene, Ala-9Val, has been examined in association with breast cancer risk in several epidemiologic studies. Results suggest that the Ala allele increases the risk of breast cancer and modifies the effects of environmental exposures that produce oxidative damage to DNA. METHODS: We examined the role of the MnSOD Ala-9Val polymorphism in a population-based case–control study of invasive and in situ breast cancer in North Carolina. Genotypes were evaluated for 2025 cases (760 African Americans and 1265 whites) and for 1812 controls (677 African Americans and 1135 whites). RESULTS: The odds ratio for MnSOD Ala/Ala versus any MnSOD Val genotypes was not elevated in African Americans (odds ratio = 0.9, 95% confidence interval = 0.7–1.2) or in whites (odds ratio = 1.0, 95% confidence interval = 0.8–1.2). Greater than additive joint effects were observed for the Ala/Ala genotype and smoking, radiation to the chest, and occupational exposure to ionizing radiation. Antagonism was observed between the Ala/Ala genotype and the use of nonsteroidal anti-inflammatory drugs. CONCLUSIONS: The MnSOD genotype may contribute to an increased risk of breast cancer in the presence of specific environmental exposures. These results provide further evidence for the importance of reactive oxygen species and of oxidative DNA damage in the etiology of breast cancer

    Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TMTSF)_2X organic superconductors

    Full text link
    An exhaustive investigation of metallic electronic transport and superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 in the Pressure-Temperature phase diagram between T=0 and 20 K and a theoretical description based on the weak coupling renormalization group method are reported. The analysis of the data reveals a high temperature domain (T\approx 20 K) in which a regular T^2 electron-electron Umklapp scattering obeys a Kadowaki-Woods law and a low temperature regime (T< 8 K) where the resistivity is dominated by a linear-in temperature component. In both compounds a correlated behavior exists between the linear transport and the extra nuclear spin-lattice relaxation due to antiferromagnetic fluctuations. In addition, a tight connection is clearly established between linear transport and T_c. We propose a theoretical description of the anomalous resistivity based on a weak coupling renormalization group determination of electron-electron scattering rate. A linear resistivity is found and its origin lies in antiferromagnetic correlations sustained by Cooper pairing via constructive interference. The decay of the linear resistivity term under pressure is correlated with the strength of antiferromagnetic spin correlations and T_c, along with an unusual build-up of the Fermi liquid scattering. The results capture the key features of the low temperature electrical transport in the Bechgaard salts
    corecore