1,590 research outputs found

    Criminal Justice is Local: Why States Disregard Universal Jurisdiction for Human Rights Abuses

    Get PDF
    A German court recently convicted a minor Syrian official of abuses committed in Syria\u27s civil war. The case was announced with fanfare but has since stirred no interest. Nor should this be surprising. The world has been here before. There was intense excitement in 1998, when British authorities arrested Augusto Pinochet, the former president of Chile, for human rights abuses committed in Chile. It was taken at the time as vindicating the doctrine that the worst human rights abuses fall under universal jurisdiction, allowing any state to prosecute, even for crimes against foreign nationals on foreign territory. As generally acknowledged today, this watershed produced barely a trickle of consequences. Notably, no former head of state has been prosecuted by another state under this rubric. Commentators have remarked upon the disappointing results but not offered much to account for them. This Article is the first to address this puzzle by situating universal jurisdiction, as a technical doctrine, in the context of its broader impulse, sometimes called transnational justice -or previously, cosmopolitan justice. The underlying claim is that otherwise rivalrous nation-states can and should affirm a broader commonality in prosecuting offenses universally acknowledged to be crimes against humanity. Although the idea has inspired human rights activists, it has failed to engage prosecutors. In analyzing the resulting pattern, this Article makes two central claims. First, the recurring failures of transnational justice cannot be explained by the project\u27s novelty. Centuries ago, the most prominent Enlightenment thinkers endorsed a version of cosmopolitan justice. It was later advocated as a doctrine that might justify interstate prosecutions within the United States. Such doctrines have never been embraced, however, by courts or even by prosecutors

    Multi-wavelength Bragg coherent X-ray diffraction imaging of Au particles

    Get PDF
    International audienceMulti-wavelength (mw) Bragg coherent X-ray diffraction imaging (BCDI) is demonstrated on a single Au particle. The multi-wavelength Bragg diffraction patterns are inverted using conventional phase-retrieval algorithms where the dilation of the effective pixel size of a pixelated 2D detector caused by the variation of the X-ray beam energy is mitigated by interpolating the raw data. The reconstructed Bragg electron density and phase field are in excellent agreement with the results obtained from conventional rocking scans of the same particle. Voxel sizes of about 6 3 nm 3 are obtained for reconstructions from both approaches. Phase shifts as small as 0.41 rad, which correspond to displacements of 14 pm and translate into strain resolution better than 10 À4 in the Au particle, are resolved. The displacement field changes shape during the experiment, which is well reproduced by finite element method simulations considering an inhomogeneous strained carbon layer deposited on the Au particle over the course of the measurements. These experiments thus demonstrate the very high sensitivity of BCDI and mw-BCDI to strain induced by contaminations. Furthermore, mw-BCDI offers new opportunities for in situ and operando 3D strain imaging in complex sample environments

    Grain Boundary Wetting by a Second Solid Phase in the High Entropy Alloys: A Review

    Get PDF
    In this review, the phenomenon of grain boundary (GB) wetting by the second solid phase is analyzed for the high entropy alloys (HEAs). Similar to the GB wetting by the liquid phase, the GB wetting by the second solid phase can be incomplete (partial) or complete. In the former case, the second solid phase forms in the GB of a matrix, the chain of (usually lenticular) precipitates with a certain non-zero contact angle. In the latter case, it forms in the GB continuous layers between matrix grains which completely separate the matrix crystallites. The GB wetting by the second solid phase can be observed in HEAs produced by all solidification-based technologies. The particle chains or continuous layers of a second solid phase form in GBs also without the mediation of a liquid phase, for example by solid-phase sintering or coatings deposition. To describe the GB wetting by the second solid phase, the new GB tie-lines should be considered in the two- or multiphase areas in the multicomponent phase diagrams for HEAs. The GB wetting by the second solid phase can be used to improve the properties of HEAs by applying the so-called grain boundary engineering methods.This research was funded by the Russian Ministry Of Science And Higher Education (contract no. 075-15-2021-945 grant no. 13.2251.21.0013). Support from the University of the Basque Country under the GIU19/019 project is also acknowledged

    The Grain Boundary Wetting Phenomena in the Ti-Containing High-Entropy Alloys: A Review

    Get PDF
    In this review, the phenomenon of grain boundary (GB) wetting by melt is analyzed for multicomponent alloys without principal components (also called high-entropy alloys or HEAs) containing titanium. GB wetting can be complete or partial. In the former case, the liquid phase forms the continuous layers between solid grains and completely separates them. In the latter case of partial GB wetting, the melt forms the chain of droplets in GBs, with certain non-zero contact angles. The GB wetting phenomenon can be observed in HEAs produced by all solidification-based technologies. GB leads to the appearance of novel GB tie lines Twmin and Twmax in the multicomponent HEA phase diagrams. The so-called grain-boundary engineering of HEAs permits the use of GB wetting to improve the HEAs’ properties or, alternatively, its exclusion if the GB layers of a second phase are detrimental.This research was funded by the Russian Ministry of Science and Higher Education (contract no. 075-15-2021-945 grant no. 13.2251.21.0013). Support from the University of the Basque Country under the GIU19/019 project is also acknowledged

    Low Latency Geo-distributed Data Analytics

    Full text link
    Low latency analytics on geographically distributed dat-asets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single data-center significantly inflates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links. We present Iridium, a system for low latency geo-distri-buted analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement op-timization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior to queries ’ arrivals, and places the tasks to reduce network bottlenecks during the query’s ex-ecution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 re-gions using production queries show that Iridium speeds up queries by 3 × − 19 × and lowers WAN usage by 15% − 64 % compared to existing baselines

    Thermodynamic aspects of the grain boundary segregation in Cu (Bi) alloys

    Get PDF
    AbstractÐThe grain boundary segregation of Bi in dilute polycrystalline Cu±Bi alloys was systematically studied as a function of temperature and composition. The temperature dependencies of the Gibbsian excess of Bi at the grain boundaries exhibited discontinuous changes at the temperatures close to, but dierent from the bulk solidus temperatures. The observed segregational phase transition was interpreted in terms of prewetting model.

    Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in The Cancer Genome Atlas

    Get PDF
    The Epstein-Barr virus (EBV)-positive subtype of gastric adenocarcinoma is conventionally identified by in situ hybridization (ISH) for viral nucleic acids, but next-generation sequencing represents a potential alternative. We therefore determined normalized EBV read counts by whole genome, whole exome, mRNA and miRNA sequencing for 295 fresh-frozen gastric tumor samples. Formalin-fixed, paraffin-embedded tissue sections were retrieved for ISH confirmation of 13 high-EBV and 11 low-EBV cases. In pairwise comparisons, individual samples were either concordantly high or concordantly low by all genomic methods for which data were available. Empiric cut-offs of sequencing counts identified 26 (9%) tumors as EBV-positive. EBV-positivity or negativity by molecular testing was confirmed by EBER-ISH in all but one tumor evaluated by both approaches (kappa=0.91). EBV-positive gastric tumors may be accurately identified by quantifying viral sequences in genomic data. Simultaneous analyses of human and viral DNA, mRNA and miRNA could streamline tumor profiling for clinical care and research
    corecore