811 research outputs found

    Structural implications of the DFD-in domain in computer-aided molecular design of MAP kinase interacting kinase 2 inhibitors.

    Get PDF
    Protein translation is a key process on cell development and proliferation that is often deregulated in cancer. MAP kinase interacting kinases 1 and 2(Mnk1/2) play a pivotal role in regulating the capdependent translation through phosphorylation ofeIF4E transcription factor. Thus, Mnk1/2 targeting have been proposed as a novel therapeutic strategy that would minimize side-effects in contrast to other therapies. For this reason, there is a growing interestin designing in silico new Mnk1/2 inhibitors which demands from reliable structural models. Interestingly,the catalytic domain of Mnk proteins are characterized by a DFD motif instead of the characteristicDFG motif of other kinases. However, Mnk2 structural models described in literature are DFG mutated and do not contain the activation loop. Molecular design techniques have been applied to obtain a structural model of the full wild type Mnk2 protein including the activation loop. The effect of the loop on the interaction mechanism of well-known ligands has been evaluated. Obtained results suggest that the presence of the activation loop is determinant for the correct prediction of the active site and it is essential for the design of new inhibitors

    Lipoma of the Uterine Corpus: Exceptional Eventuality Combined with an Ovarian Thecoma

    Get PDF
    Uterine lipomas are very uncommon with symptoms that are similar to leiomyomas. Their diagnosis is always histological although some radiological methods may suggest their existence prior to surgery. They are sometimes associated with endometrial pathology, but there are no previous reported cases related to ovarian thecoma. Their prognosis is excellent. Clinical, radiological, morphologic, and immunohistochemical findings are shown which correspond to uterine lipoma associated with endometrial polyps and ovarian thecoma

    Role of transport performance on neuron cell morphology

    Full text link
    The compartmental model is a basic tool for studying signal propagation in neurons, and, if the model parameters are adequately defined, it can also be of help in the study of electrical or fluid transport. Here we show that the input resistance, in different networks which simulate the passive properties of neurons, is the result of an interplay between the relevant conductances, morphology and size. These results suggest that neurons must grow in such a way that facilitates the current flow. We propose that power consumption is an important factor by which neurons attain their final morphological appearance.Comment: 9 pages with 3 figures, submitted to Neuroscience Letter

    Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept

    Get PDF
    Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular

    Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National Consensus of the Spanish Society of Medical Oncology and the Spanish Society of Pathology

    Get PDF
    In this update of the consensus of the Spanish Society of Medical Oncology (Sociedad Española de Oncología Médica SEOM) and the Spanish Society of Pathology (Sociedad Española de Anatomía Patológica SEAP), advances in the analysis of biomarkers in advanced colorectal cancer (CRC) as well as susceptibility markers of hereditary CRC and molecular biomarkers of localized CRC are reviewed. Recently published information on the essential determination of KRAS, NRAS and BRAF mutations and the convenience of determining the amplifcation of human epidermal growth factor receptor 2 (HER2), the expression of proteins in the DNA repair pathway and the study of NTRK fusions are also evaluated. From the pathological point of view, the importance of analysing the tumour budding and poorly diferentiated clusters, and its prognostic value in CRC is reviewed, as well as the impact of molecular lymph node analysis on lymph node staging in CRC. The incorporation of pan-genomic technologies, such as next-generation sequencing (NGS) and liquid biopsy in the clinical management of patients with CRC is also outlined. All these aspects are developed in this guide, which, like the previous one, will remain open to any necessary revision in the future

    Enhancing neural-network performance via assortativity

    Full text link
    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations -- or assortativity -- on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.Comment: 9 pages, 7 figure

    Beyond Hebb: Exclusive-OR and Biological Learning

    Full text link
    A learning algorithm for multilayer neural networks based on biologically plausible mechanisms is studied. Motivated by findings in experimental neurobiology, we consider synaptic averaging in the induction of plasticity changes, which happen on a slower time scale than firing dynamics. This mechanism is shown to enable learning of the exclusive-OR (XOR) problem without the aid of error back-propagation, as well as to increase robustness of learning in the presence of noise.Comment: 4 pages RevTeX, 2 figures PostScript, revised versio

    SEOM clinical guidelines in hereditary breast and ovarian cancer (2019)

    Get PDF
    Mutations in BRCA1 and BRCA2 high penetrance genes account for most hereditary breast and ovarian cancer, although other new high-moderate penetrance genes included in multigene panels have increased the genetic diagnosis of hereditary breast and ovarian cancer families by 50%. Multigene cancer panels provide new challenges related to increased frequency of variants of uncertain significance, new gene-specific cancer risk assessments, and clinical recommendations for carriers of mutations of new genes. Although clinical criteria for genetic testing continue to be largely based on personal and family history with around a 10% detection rate, broader criteria are being applied with a lower threshold for detecting mutations when there are therapeutic implications for patients with breast or ovarian cancer. In this regard, new models of genetic counselling and testing are being implemented following the registration of PARP inhibitors for individuals who display BRCA mutations. Massive sequencing techniques in tumor tissue is also driving a paradigm shift in genetic testing and potential identification of germline mutations. In this paper, we review the current clinical criteria for genetic testing, as well as surveillance recommendations in healthy carriers, risk reduction surgical options, and new treatment strategies in breast cancer gene-mutated carriers

    Axon swellings produced in vivo in isolated segments of nerves

    Full text link
    Within 3–5 hrs after cutting rat and cat sciatic nerves into segments which had no connection with the cell body, club-shaped axon swellings were observed at both ends of the segments. The swollen portion of these axons showed increased histochemical reactions for DPN-diaphorase, lactic dehydrogenase, malic dehydrogenase, succinic dehydrogenase, and protein; the increase lasted for 24–48 hrs after the nerve was cut. The swollen axons were morphologically and histochemically similar to, but never as markedly changed, as those observed in the proximal stumps of severed nerves. The development of axon swellings was prevented by depolarization of the entire segment with KCl; however, if KCl was applied selectively to the stumps of the segment, it appeared to intensify rather than prevent the swelling. It was also noted that the extent of axon swelling was inversely proportional to the length of the segment. These observations suggested that the development and extent of axon swelling was related to the intensity of local injury currents in the tissue. Innerhalb von 3–5 Std nach Zerschneidung des Nervus ischiadicus von Ratten und Katzen in Segmente, die keine Verbindung mit dem Zellkörper besitzen, sind zylinderförmige Axonschwellungen an beiden Enden der Segmente zu beobachten. Der angeschwollene Teil dieser Axone zeigt verstärkte histochemische Reaktionen auf DPN-Diaphorase, Milchsäure-Dehydrogenase, Apfelsäure-Dehydrogenase, Bernsteinsäure-Dehydrogenase und Protein; dieser Anstieg hält 24–48 Std nach der Durchtrennung des Nervs an. Die Axonschwellungen sind sowohl morphologisch als auch histochemisch ähnlich — jedoch niemals in gleich starker Ausprägung — jenen, die in den proximalen Stümpfen von verletzten Nerven beobachtet werden.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47224/1/401_2004_Article_BF00684398.pd

    Five microRNAs in Serum Are Able to Differentiate Breast Cancer Patients From Healthy Individuals

    Get PDF
    Breast cancer is the cancer with the most incidence and mortality in women. microRNAs are emerging as novel prognosis/diagnostic tools. Our aim was to identify a serum microRNA signature useful to predict cancer development. We focused on studying the expression levels of 30 microRNAs in the serum of 96 breast cancer patients vs. 92 control individuals. Bioinformatic studies provide a microRNA signature, designated as a predictor, based on the expression levels of five microRNAs. Then, we tested the predictor in a group of 60 randomly chosen women. Lastly, a proteomic study unveiled the overexpression and downregulation of proteins differently expressed in the serum of breast cancer patients vs. that of control individuals. Twenty-six microRNAs differentiate cancer tissue from healthy tissue, and 16 microRNAs differentiate the serum of cancer patients from that of the control group. The tissue expression of miR-99a, miR-497, miR-362, and miR-1274, and the serum levels of miR-141 correlated with patient survival. Moreover, the predictor consisting of miR-125b, miR-29c, miR-16, miR-1260, and miR-451 was able to differentiate breast cancer patients from controls. The predictor was validated in 20 new cases of breast cancer patients and tested in 60 volunteer women, assigning 11 out of 60 women to the cancer group. An association of low levels of miR-16 with a high content of CD44 protein in serum was found. Circulating microRNAs in serum can represent biomarkers for cancer prediction. Their clinical relevance and the potential use of the predictor here described are discussed
    corecore