3,506 research outputs found

    Projectile-shape dependence of impact craters in loose granular media

    Full text link
    We report on the penetration of cylindrical projectiles dropped from rest into a dry, noncohesive granular medium. The cylinder length, diameter, density, and tip shape are all explicitly varied. For deep penetrations, as compared to the cylinder diameter, the data collapse onto a single scaling law that varies as the 1/3 power of the total drop distance, the 1/2 power of cylinder length, and the 1/6 power of cylinder diameter. For shallow penetrations, the projectile shape plays a crucial role with sharper objects penetrating deeper.Comment: 3 pages, 3 figures; experimen

    Dynamics of grain ejection by sphere impact on a granular bed

    Get PDF
    The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favourably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains is evaluated and allows for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.Comment: 9 page

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    The measurement of aircraft performance and stability and control after flight through natural icing conditions

    Get PDF
    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag

    Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets

    Full text link
    In the CERN NA63 collaboration we have addressed the question of the potential inadequacy of the commonly used Migdal formulation of the Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20 and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference target, Ta. For each target and energy, a comparison between simulated values based on the LPM suppression of incoherent bremsstrahlung is shown, taking multi-photon effects into account. For these targets and energies, we find that Migdal's theoretical formulation is adequate to a precision of better than about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
    • …
    corecore