656 research outputs found
Efficient Monte Carlo algorithm and high-precision results for percolation
We present a new Monte Carlo algorithm for studying site or bond percolation
on any lattice. The algorithm allows us to calculate quantities such as the
cluster size distribution or spanning probability over the entire range of site
or bond occupation probabilities from zero to one in a single run which takes
an amount of time scaling linearly with the number of sites on the lattice. We
use our algorithm to determine that the percolation transition occurs at
occupation probability 0.59274621(13) for site percolation on the square
lattice and to provide clear numerical confirmation of the conjectured
4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this
version, plus updated figures for the position of the percolation transitio
Transistors
Contains reports on eight research projects.Lincoln Laboratory under Contract AF19(122)-45
Universality of finite-size corrections to the number of critical percolation clusters
Monte-Carlo simulations on a variety of 2d percolating systems at criticality
suggest that the excess number of clusters in finite systems over the bulk
value of nc is a universal quantity, dependent upon the system shape but
independent of the lattice and percolation type. Values of nc are found to high
accuracy, and for bond percolation confirm the theoretical predictions of
Temperley and Lieb, and Baxter, Temperley, and Ashley, which we have evaluated
explicitly in terms of simple algebraic numbers. Predictions for the
fluctuations are also verified for the first time.Comment: 13 pages, 2 figs., Latex, submitted to Phys. Rev. Let
A fast Monte Carlo algorithm for site or bond percolation
We describe in detail a new and highly efficient algorithm for studying site
or bond percolation on any lattice. The algorithm can measure an observable
quantity in a percolation system for all values of the site or bond occupation
probability from zero to one in an amount of time which scales linearly with
the size of the system. We demonstrate our algorithm by using it to investigate
a number of issues in percolation theory, including the position of the
percolation transition for site percolation on the square lattice, the
stretched exponential behavior of spanning probabilities away from the critical
point, and the size of the giant component for site percolation on random
graphs.Comment: 17 pages, 13 figures. Corrections and some additional material in
this version. Accompanying material can be found on the web at
http://www.santafe.edu/~mark/percolation
Exact results at the 2-D percolation point
We derive exact expressions for the excess number of clusters b and the
excess cumulants b_n of a related quantity at the 2-D percolation point.
High-accuracy computer simulations are in accord with our predictions. b is a
finite-size correction to the Temperley-Lieb or Baxter-Temperley-Ashley formula
for the number of clusters per site n_c in the infinite system limit; the bn
correct bulk cumulants. b and b_n are universal, and thus depend only on the
system's shape. Higher-order corrections show no apparent dependence on
fractional powers of the system size.Comment: 12 pages, 2 figures, LaTeX, submitted to Physical Review Letter
Comparing apples and oranges: assessment of the relative video quality in the presence of different types of distortions
<p>Abstract</p> <p>Video quality assessment is essential for the performance analysis of visual communication applications. Objective metrics can be used for estimating the relative quality differences, but they typically give reliable results only if the compared videos contain similar types of quality distortion. However, video compression typically produces different kinds of visual artifacts than transmission errors. In this article, we focus on a novel subjective quality assessment method that is suitable for comparing different types of quality distortions. The proposed method has been used to evaluate how well different objective quality metrics estimate the relative subjective quality levels for content with different types of quality distortions. Our conclusion is that none of the studied objective metrics works reliably for assessing the co-impact of compression artifacts and transmission errors on the subjective quality. Nevertheless, we have observed that the objective metrics' tendency to either over- or underestimate the perceived impact of transmission errors has a high correlation with the spatial and temporal activity levels of the content. Therefore, our results can be useful for improving the performance of objective metrics in the presence of both source and channel distortions.</p
Multi-step self-guided pathways for shape-changing metamaterials
Multi-step pathways, constituted of a sequence of reconfigurations, are
central to a wide variety of natural and man-made systems. Such pathways
autonomously execute in self-guided processes such as protein folding and
self-assembly, but require external control in macroscopic mechanical systems,
provided by, e.g., actuators in robotics or manual folding in origami. Here we
introduce shape-changing mechanical metamaterials, that exhibit self-guided
multi-step pathways in response to global uniform compression. Their design
combines strongly nonlinear mechanical elements with a multimodal architecture
that allows for a sequence of topological reconfigurations, i.e., modifications
of the topology caused by the formation of internal self-contacts. We realized
such metamaterials by digital manufacturing, and show that the pathway and
final configuration can be controlled by rational design of the nonlinear
mechanical elements. We furthermore demonstrate that self-contacts suppress
pathway errors. Finally, we demonstrate how hierarchical architectures allow to
extend the number of distinct reconfiguration steps. Our work establishes
general principles for designing mechanical pathways, opening new avenues for
self-folding media, pluripotent materials, and pliable devices in, e.g.,
stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See
https://youtu.be/8m1QfkMFL0I for an explanatory vide
meson production in Au collisions at GeV
The PHENIX experiment has measured meson production in Au
collisions at GeV using the dimuon and dielectron decay
channels. The meson is measured in the forward (backward) -going
(Au-going) direction, () in the transverse-momentum
() range from 1--7 GeV/, and at midrapidity in the
range below 7 GeV/. The meson invariant yields and
nuclear-modification factors as a function of , rapidity, and centrality
are reported. An enhancement of meson production is observed in the
Au-going direction, while suppression is seen in the -going direction, and
no modification is observed at midrapidity relative to the yield in
collisions scaled by the number of binary collisions. Similar behavior was
previously observed for inclusive charged hadrons and open heavy flavor
indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version
accepted for publication in Phys. Rev. C. Data tables for the points plotted
in the figures are given in the paper itsel
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- …