358 research outputs found

    Solitonic spin-liquid state due to the violation of the Lifshitz condition in Fe1+y_{1+y}Te

    Full text link
    A combination of phenomenological analysis and M\"ossbauer spectroscopy experiments on the tetragonal Fe1+y_{1+y}Te system indicates that the magnetic ordering transition in compounds with higher Fe-excess, yy\ge 0.11, is unconventional. Experimentally, a liquid-like magnetic precursor with quasi-static spin-order is found from significantly broadened M\"ossbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave (SDW) order in Fe1+y_{1+y}Te is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.Comment: 5 pages, 2 figure

    Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te

    Full text link
    A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. In this study we show that such an electronic topological transition is at the basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe1.08_{1.08}Te. Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground-state of Fe1.08_{1.08}Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a `type 0' transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe1.08_{1.08}Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.Comment: 7 pages, 4 figur

    First-order structural transition in the magnetically ordered phase of Fe1.13Te

    Full text link
    Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron X-ray powder diffraction investigations of single crystals Fe1+yTe (0.06 < y < 0.15) reveal a splitting of a single, first-order transition for y 0.12. Most strikingly, all measurements on identical samples Fe1.13Te consistently indicate that, upon cooling, the magnetic transition at T_N precedes the first-order structural transition at a lower temperature T_s. The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c-axis displays a small distortion close to T_N due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T_s. The lattice symmetry changes, however, only below T_s as indicated by powder X-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.Comment: 6 page

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure

    Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?

    Full text link
    Axisymmetric magnetic lines of nanometer sizes (chiral vortices or skyrmions) have been predicted to exist in a large group of noncentrosymmetric crystals more than two decades ago. Recently these magnetic textures have been directly observed in nanolayers of cubic helimagnets and monolayers of magnetic metals. We develop a micromagnetic theory of chiral skyrmions in thin magnetic layers for magnetic materials with intrinsic and induced chirality. Such particle-like and stable micromagnetic objects can exist in broad ranges of applied magnetic fields including zero field. Chiral skyrmions can be used as a new type of highly mobile nanoscale data carriers

    Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te

    Full text link
    We report the effects of hydrostatic pressure on the temperature-induced phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron powder x-ray diffraction (XRD). The results reveal a plethora of phase transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order structural symmetry-breaking and magnetic phase transitions, namely from the paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m) phase. We show that, at a pressure of 1.33 GPa, the low temperature structure adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa and higher, a symmetry-conserving tetragonal-tetragonal phase transition has been identified from a change in the c/a ratio of the lattice parameters. The succession of different pressure and temperature-induced structural and magnetic phases indicates the presence of strong magneto-elastic coupling effects in this material.Comment: 11 page

    Disorder-driven electronic localization and phase separation in superconducting Fe1+yTe0.5Se0.5 single crystals

    Get PDF
    We have investigated the influence of Fe-excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (Tc) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field Hc1, it is inferred that excess of Fe suppresses superconductivity. The linear and non-linear responses of the ac-susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe-excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity drho/dT in the temperature range Tc < T < Ta with Ta being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above Tc in the sample with higher amount of Fe suggests a disorder driven electronic localization.Comment: 7 page

    Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites

    Full text link
    High resolution topographic images obtained by scanning tunneling microscope in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a high temperature polaronic state. Spectroscopic studies revealed inhomogeneous maps of zero-bias conductance with small patches of metallic clusters on length scale of 2 - 3 nm only within a narrow temperature range close to the metal-insulator transition. The results give a direct observation of polarons in the insulating state, phase separation of nanometer-scale metallic clusters in the paramagnetic metallic state, and a homogeneous ferromagnetic state
    corecore