9,567 research outputs found
Vascularization and odontode structure of a dorsal ridge spine of Romundina stellina Ørvig 1975
There are two types of dermal skeletons in jawed vertebrates: placoderms and osteichthyans carry large bony plates (macromery), whereas chondrichthyans and acanthodians are covered by small scales (micromery). Fin spines are one of the last large dermal structures found on micromeric taxa and offer a potential source of histology and morphology that can be compared to those found on macromeric groups. Dermal fin spines offer a variety of morphology but aspects of their growth modes and homology are unclear. Here, we provide detailed descriptions of the microstructure and growth of a dorsal ridge spine from the acanthothoracid placoderm, Romundina stellina, using virtual three-dimensional paleohistological datasets. From these data we identify several layers of dentine ornamentation covering the lateral surfaces of the spine and reconstructed their growth pattern. We show that this spine likely grew posteriorly and proximally from a narrow portion of bone located along the leading edge of the spine. The spine is similarly constructed to the scales with a few exceptions, including the absence of polarized fibers distributed throughout the bone and the presence of a thin layer of perichondral bone. The composition of the spine (semidentine odontodes, dermal bone, perichondral bone) is identical to that of the Romundina dermal plates. These results illustrate the similarities and differences between the dermal tissues in Romundina and indicate that the spine grew differently from the dentinous fin spines from extant and fossil chondrichthyans. The morphology and histology of Romundina is most similar to the fin spine of the probable stem osteichthyan Lophosteus, with a well-developed inner cellular bony base and star-shaped odontodes on the surface. Results from these studies will undoubtedly have impact on our understanding of fossil fin spine histology and evolution, contributing to the on-going revision of early gnathostome phylogeny
The instability of diffusive convection and its implication for the thermohaline staircases in the deep Arctic Ocean
In the present study, the classical description of diffusive convection is
updated to interpret the instability of diffusive interfaces and the
dynamical evolution of the bottom layer in the deep Arctic Ocean. In the new
consideration of convective instability, both the background salinity
stratification and rotation are involved. The critical Rayleigh number of
diffusive convection is found to vary from 10<sup>3</sup> to 10<sup>11</sup> in the deep
Arctic Ocean as well as in other oceans and lakes. In such a wide range of
conditions, the interface-induced thermal Rayleigh number is shown to be
consistent with the critical Rayleigh number of diffusive convection. In most
regions, background salinity stratification is found to be the main hindrance
to the occurrence of convecting layers. With the new parameterization, it is
predicted that the maximum thickness of the bottom layer is 1051 m in the
deep Arctic Ocean, which is close to the observed value of 929 m. The evolution time of
the bottom layer is predicted to be ~ 100 yr, which is on the same
order as that based on <sup>14</sup>C isolation age estimation
Nutrigenomics Therapy of Hepatisis C Virus Induced-hepatosteatosis
Nutrigenomics is a relatively new branch of nutrition science, which aim is to study the impact of the foods we eat on the function of our genes. Hepatosteatosis is strongly associated with hepatitis C virus infection, which is known to increase the risk of the disease progression and reduce the likelihood of responding to anti-virus treatment. It is well documented that hepatitis C virus can directly alter host cell lipid metabolism through nuclear transcription factors. To date, only a limited number of studies have been on the effect of human foods on the nuclear transcription factors of hepatitis C virus-induced hepatosteatosis.Three nutrients, selected among 46 different nutrients: beta-carotene, vitamin D-2, and linoleic acid were found in a cell culture system to inhibit hepatitis C virus RNA replication. In addition, polyunsaturated fatty acids (PUFAs) especially arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) have been demonstrated to inhibit hepatitis C virus RNA replication. These PUFAs, in particular the highly unsaturated n-3 fatty acids change the gene expression of PPARa and SREBP, suppress the expression of mRNAs encoding key metabolic enzymes and hereby suppress hepatic lipogenesis and triglyceride synthesis, as well as secretion and accumulation in tissues. A recent prospective clinical trial of 1,084 chronic hepatitis C patients compared to 2,326 healthy subjects suggests that chronic hepatitis C patients may benefit from strict dietary instructions.Increasing evidence suggest that some crucial nuclear transcription factors related to hepatitis C virus-associated hepatosteatosis and hepatitis C virus RNA itself can be controlled by specific anti-hepatitis C virus nutrition. It seems important that these findings are taken into account and specific nutritional supplements developed to be used in combination with interferon as adjunctive therapy with the aim to improve both the early as well as the sustained virological response
Extreme Sensitivity of Superconductivity to Stoichiometry in FeSe (Fe1+dSe)
The recently discovered iron arsenide superconductors, which display
superconducting transition temperatures as high as 55 K, appear to share a
number of general features with high-Tc cuprates, including proximity to a
magnetically ordered state and robustness of the superconductivity in the
presence of disorder. Here we show that superconductivity in Fe1+dSe, the
parent compound of the superconducting arsenide family, is destroyed by very
small changes in stoichiometry. Further, we show that non-superconducting
Fe1+dSe is not magnetically ordered down to low temperatures. These results
suggest that robust superconductivity and immediate instability against an
ordered magnetic state should not be considered as intrinsic characteristics of
iron-based superconducting systems, and that Fe1+dSe may present a unique
opportunity for determining which materials characteristics are critical to the
existence of superconductivity in high Tc iron arsenide superconductors and
which are not.Comment: Updated to reflect final version and include journal referenc
- …