866 research outputs found

    Bariatric surgery and brain health: A longitudinal observational study investigating the effect of surgery on cognitive function and gray matter volume

    Get PDF
    Dietary modifications leading to weight loss have been suggested as a means to improve brain health. In morbid obesity, bariatric surgery (BARS)—including different procedures, such as vertical sleeve gastrectomy (VSG), gastric banding (GB), or Roux-en-Y gastric bypass (RYGB) surgery—is performed to induce rapid weight loss. Combining reduced food intake and malabsorption of nutrients, RYGB might be most effective, but requires life-long follow-up treatment. Here, we tested 40 patients before and six months after surgery (BARS group) using a neuropsychological test battery and compared them with a waiting list control group. Subsamples of both groups underwent structural MRI and were examined for differences between surgical procedures. No substantial differences between BARS and control group emerged with regard to cognition. However, larger gray matter volume in fronto-temporal brain areas accompanied by smaller volume in the ventral striatum was seen in the BARS group compared to controls. RYGB patients compared to patients with restrictive treatment alone (VSG/GB) had higher weight loss, but did not benefit more in cognitive outcomes. In sum, the data of our study suggest that BARS might lead to brain structure reorganization at long-term follow-up, while the type of surgical procedure does not differentially modulate cognitive performance

    Assessing Magnetic Iron Oxide Nanoparticles Properties under Different Thermal Treatments

    Get PDF
    Magnetic nanoparticle structures have been examined as potential carrier vehicles and substrates in a wide range of applications where they undergo mechanical, chemical and/or thermal manipulation to allow for their modification, conjugation and transport. For safe and effective use, it is imperative to not only measure the initial physicochemical and structural properties of nanomaterials, but also identify and quantify any property changes related to a loss of chemical and/or physical integrity during processing and usage conditions. In this study an assessment of iron oxide magnetic nanoparticle thermal stability using modulated differential scanning calorimetry (mDSC) and a controlled-heating system is conducted on two types of iron oxide nanoparticles: maghemite (Fe2O3; 500 nm) with silanol surface functional groups and magnetite (Fe3O4; 200 nm) with primary amine terminated alkoxysilane surface functional groups. Modulated differential scanning calorimetry (mDSC) results revealed an endothermic peak at 388 K for both types of nanoparticles indicating possible molecular rearrangement within the structure. To confirm this result, iron oxide nanoparticles were heated while in aqueous suspensions at discrete temperatures ranges from 303 to 403 K. Calorimetry, FT-IR spectroscopy, and dynamic light scattering measurements were used to examine changes in the chemical and physical stability of the suspensions. Morphological characteristics were evaluated using optical microscopy, transmission electron microscopy, and atomic force microscopy. Results showed that the chemical and morphological structure of the nanocomposite is critical in determining the thermal performance of the iron oxide nanoparticles. Amine-terminated silane functionalized magnetite nanoparticles were highly susceptible to morphological and surface-chemistry changes starting at ca. 353 K. Conversely, silanol functionalized maghemite nanoparticles were shown to be stable in terms of morphology and chemical structure up to 403 K. Micrographs demonstrated variations in magnetic domains distribution after exposing the nanoparticles to thermal treatments, confirming the results obtained through mDSC and FT-IR measurements

    Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope

    Get PDF
    AbstractBackground: Selective protein import into the cell nucleus occurs in two steps: binding to the nuclear envelope, followed by energy-dependent transit through the nuclear pore complex. A 60 kD protein, importin, is essential for the first nuclear import step, and the small G protein Ran/TC4 is essential for the second. We have previously purified the 60 kD importin protein (importin 60) as a single polypeptide.Results We have identified importin 90, a 90 kD second subunit that dissociates from importin 60 during affinity chromatography on nickel (II)–nitrolotriacetic acid–Sepharose, a technique that was originally used to purify importin 60. Partial amino-acid sequencing of Xenopus importin 90 allowed us to clone and sequence its human homologue; the amino-acid sequence of importin 90 is strikingly conserved between the two species. We have also identified a homologous budding yeast sequence from a database entry. Importin 90 potentiates the effects of importin 60 on nuclear protein import, indicating that the importin complex is the physiological unit responsible for import. To assess whether nuclear localization sequences are recognized by cytosolic receptor proteins, a biotin-tagged conjugate of nuclear localization signals linked to bovine serum albumin was allowed to form complexes with cytosolic proteins in Xenopus egg extracts; the complexes were then retrieved with streptavidin–agarose. The pattern of bound proteins was surprisingly simple and showed only two predominant bands: those of the importin complex. We also expressed the human homologue of importin 60, Rch1p, and found that it was able to replace its Xenopus counterpart in a functional assay. We discuss the relationship of importin 60 and importin 90 to other nuclear import factors.Conclusion Importin consists of a 60 and a 90 kD subunit. Together, they constitute a cytosolic receptor for nuclear localization signals that enables import substrates to bind to the nuclear envelope

    The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a paracrine mechanism of neuronal loss, in which cytokines and other toxic factors released from astroglia or microglia trigger motoneuron degeneration. Several pro-inflammatory cytokines activate death receptors and may downstream from this activate the Bcl-2 family protein, Bid. We here sought to investigate the role of Bid in astrocyte activation and non-cell autonomous motoneuron degeneration. We found that spinal cord Bid protein levels increased significantly during disease progression in SOD1(G93A) mice. Subsequent experiments in vitro indicated that Bid was expressed at relatively low levels in motoneurons, but was enriched in astrocytes and microglia. Bid was strongly induced in astrocytes in response to pro-inflammatory cytokines or exposure to lipopolysaccharide. Experiments in bid-deficient astrocytes or astrocytes treated with a small molecule Bid inhibitor demonstrated that Bid was required for the efficient activation of transcription factor nuclear factor-ÎşB in response to these pro-inflammatory stimuli. Finally, we found that conditioned medium from wild-type astrocytes, but not from bid-deficient astrocytes, was toxic when applied to primary motoneuron cultures. Collectively, our data demonstrate a new role for the Bcl-2 family protein Bid as a mediator of astrocyte activation during neuroinflammation, and suggest that Bid activation may contribute to non-cell autonomous motoneuron degeneration in ALS

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation

    Analysis of BH3-only proteins upregulated in response to oxygen/glucose deprivation in cortical neurons identifies Bmf but not Noxa as potential mediator of neuronal injury

    Get PDF
    Stress signaling in response to oxygen/glucose deprivation (OGD) and ischemic injury activates a group of pro-apoptotic genes, the Bcl-2 homology domain 3 (BH3)-only proteins, which are capable of activating the mitochondrial apoptosis pathway. Targeted studies previously identified the BH3-only proteins Puma, Bim and Bid to have a role in ischemic/hypoxic neuronal injury. We here investigated the transcriptional activation of pro-apoptotic BH3-only proteins after OGD-induced injury in murine neocortical neurons. We observed a potent and early upregulation of noxa at mRNA and protein level, and a significant increase in Bmf protein levels during OGD in neocortical neurons and in the ipsilateral cortex of mice subjected to transient middle cerebral artery occlusion (tMCAO). Surprisingly, gene deficiency in noxa reduced neither OGD- nor glutamate-induced neuronal injury in cortical neurons and failed to influence infarct size or neurological deficits after tMCAO. In contrast, bmf deficiency induced significant protection against OGD- or glutamate-induced injury in cultured neurons, and bmf-deficient mice showed reduced neurological deficits after tMCAO in vivo. Collectively, our data not only point to a role of Bmf as a BH3-only protein contributing to excitotoxic and ischemic neuronal injury but also demonstrate that the early and potent induction of noxa does not influence ischemic neuronal injury

    Laying the foundations of community engagement in Aboriginal health research: establishing a community reference group and terms of reference in a novel research field

    Get PDF
    Background Community engagement or community involvement in Aboriginal health research is a process that involves partnering, collaborating and involving Aboriginal and Torres Strait Islander people or potential research participants to empower them to have a say in how research with Aboriginal communities is conducted. In the context of Aboriginal health, this is particularly important so that researchers can respond to the priorities of the community under study and conduct research in a way that is respectful of Aboriginal cultural values and beliefs. One approach to incorporating the principals of community engagement and to ensure cultural oversight and guidance to projects is to engage a community reference group. The aim of this study was to describe the process of establishing an Aboriginal community reference group and terms of reference. The community reference group was established to guide the research activities of a newly formed research collaboration aiming to to develop osteoarthritis care that meets the needs of Aboriginal and Torres Strait Islander people in Australia. Methods Adopting a Participatory Action Research approach, this two-phase study was conducted in Victoria, Australia. In phase one, semi-structured research yarns (a cultural form of conversation used as a data gathering tool) were conducted collaboratively by Aboriginal and non-Aboriginal co-investigators to explore Aboriginal health stakeholder perspectives on establishing a community reference group and terms of reference. In phase two, recommendations in phase one were identified to invite members to participate in the community reference group and to ratify the terms of reference through a focus group. Data were analyzed using a framework analysis approach. Results Thirteen people (eight female, four male) participated in phase one. Participants represented diverse professional backgrounds including physiotherapy, nursing, general practice, health services management, hospital liaison, cultural safety education, health research and the arts. Three themes were identified in phase one; Recruitment and Representation (trust and relationships, in-house call-outs, broad-spectrum expertise and Aboriginal majority); Purpose (community engagement, research steering, knowledge dissemination and advocacy) and; Function and Logistics (frequency and format of meetings, size of group, roles and responsibilities, authority, communication and dissemination). In phase two, six Aboriginal people were invited to become members of the community reference group who recommended changes which were incorporated into the seven domains of the terms of reference. Conclusion The findings of this study are captured in a 10-step framework which describes practical strategies for establishing a community reference group and terms of reference in Aboriginal health research

    Understanding the impact and tackling the burden of osteoarthritis for Aboriginal and Torres Strait Islander people

    Get PDF
    Objective The aim of this study was to understand and describe the lived experience of Aboriginal and Torres Strait Islander people with osteoarthritis. Methods Qualitative study guided by cultural security, which ensures that research is conducted in a way that will not compromise the cultural values, beliefs, and expectations of Aboriginal and Torres Strait Islander people. Participants were purposively sampled through the networks of project staff. Research yarns (a cultural form of conversation used as a data gathering tool) were conducted with 25 Aboriginal and Torres Strait Islander adults with self-reported osteoarthritis in Western Australia and Victoria, Australia. Data were analyzed using a framework approach and presented through composite storytelling (hypothetical stories representing an amalgam of participants’ experiences). Results Two composite stories were constructed to reflect themes relating to beliefs and knowledge, impact, coping, and health care experiences. Common beliefs held by participants were that osteoarthritis is caused by previous physically active lifestyles. Many participants feared for their future, increasing disability and needing a wheelchair. Pain associated with osteoarthritis impacted daily activities, sleep, work, family, and social life and cultural activities. Multidimensional impacts were often experienced within complex health or life circumstances and associated with increased anxiety and depression. Most participants reported negative health care experiences, characterized by poor patient–provider communication. Conclusion Our findings highlight that osteoarthritis is a multidimensional issue for Aboriginal and Torres Strait Islander people that permeates all aspects of life and highlights the need for integrated, multidisciplinary care that is culturally informed and individualized to patient need
    • …
    corecore