3,606 research outputs found

    Pressure Treated Wood

    Get PDF
    Discusses chemical treatments to increase wood's fire resistance and protect it from rot and termites

    Damped Lyman alpha systems and disk galaxies: number density, column density distribution and gas density

    Full text link
    We present a comparison between the observed properties of damped Lyman alpha systems (DLAs) and the predictions of simple models for the evolution of present day disk galaxies, including both low and high surface brightness galaxies. We focus in particular on the number density, column density distribution and gas density of DLAs, which have now been measured in relatively large samples of absorbers. From the comparison we estimate the contribution of present day disk galaxies to the population of DLAs, and how it varies with redshift. Based on the differences between the models and the observations, we also speculate on the nature of the fraction of DLAs which apparently do not arise in disk galaxies.Comment: 11 pages, 10 figures, accepted in MNRA

    Sea turtle nesting in the Ten Thousand Islands of Florida

    Get PDF
    Loggerhead sea turtles (Caretta caretta) nest in numerous substrate and beach types within the Ten Thousand Islands (TTl) of southwest Florida. Nesting beach selection was analyzed on 12 islands within this archipelago. Numerous physical characteristics were recorded to identify the relatedness of these variables and determine their importance for nesting beach selection in C. caretta. These variables were chosen after evaluating the islands, conducting literature searches and soliciting personal communications. Along transects, data were collected, on the following: height of canopy, beach width, overall slope (beach slope and slope of offshore approach) and sand samples analyzed for pH, percentage of water, percentage of organic content, percentage of carbonate and particle size (8 size classes). Data on ordinal aspect of beaches and beach length were also recorded and included in the analysis. All of the variables were analyzed by tree regression, incorporating the nesting data into the analysis. In the TTl, loggerheads appear to prefer wider beaches (p< 0.001; R2 = 0.56) that inherently have less slope, and secondarily, wider beaches that have low amounts of carbonate (p< O.00 1). In addition, C. caretta favors nest sites within or in close proximity to the supra-littoral vegetation zone of beaches in the TTl (p< 0.001). (86 page document

    Carbureting conditions characteristics of aircraft engines

    Get PDF
    Tests were conducted at the altitude laboratory erected at the Bureau of Standards for the National Advisory Committee for Aeronautics to determine the changes in engine performance with changes in atmospheric temperature and pressure at various levels above the earth's surface, with special reference to (a) the variables affecting the functioning of the carburetor and (b) the changes in performance resulting from variables in the carburetor itself. This report constitutes a concise statement of the difficulties to be encountered in this branch of carburetion

    Sewing sound quantum flesh onto classical bones

    Full text link
    Semiclassical transformation theory implies an integral representation for stationary-state wave functions ψm(q)\psi_m(q) in terms of angle-action variables (θ,J\theta,J). It is a particular solution of Schr\"{o}dinger's time-independent equation when terms of order 2\hbar^2 and higher are omitted, but the pre-exponential factor A(q,θ)A(q,\theta) in the integrand of this integral representation does not possess the correct dependence on qq. The origin of the problem is identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix adequately in A(q,θ)A(q,\theta) a factor which is a function of the action JJ written in terms of qq and θ\theta. A prescription for an improved choice of this factor, based on succesfully reproducing the leading behaviour of wave functions in the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the Residue Theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical expressions for the stationary-state wave functions of the various potential models considered (namely, a P\"{o}schl-Teller oscillator and the Morse oscillator).Comment: RevTeX4, 6 page

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    Ultimate decoherence border for matter-wave interferometry

    Full text link
    Stochastic backgrounds of gravitational waves are intrinsic fluctuations of spacetime which lead to an unavoidable decoherence mechanism. This mechanism manifests itself as a degradation of the contrast of quantum interferences. It defines an ultimate decoherence border for matter-wave interferometry using larger and larger molecules. We give a quantitative characterization of this border in terms of figures involving the gravitational environment as well as the sensitivity of the interferometer to gravitational waves. The known level of gravitational noise determines the maximal size of the molecular probe for which interferences may remain observable. We discuss the relevance of this result in the context of ongoing progresses towards more and more sensitive matter-wave interferometry.Comment: 4 page
    corecore