123 research outputs found

    Why the increase in under five mortality in Uganda from 1995 to 2000? A retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From 1995-2000 the under five mortality rate in Uganda increased from 147.3 to 151.5 deaths per 1000 live births and reasons for the increase were not clear. This study was undertaken to understand factors influencing the increase in under five mortality rate during 1995-2000 in Uganda with a view of suggesting remedial actions.</p> <p>Methods</p> <p>We performed a comparative retrospective analysis of data derived from the 1995 and the 2000 Uganda demographic and health surveys. We correlated the change of under five mortality rate in Uganda desegregated by region (central, eastern, north and western) with change in major known determinants of under five mortality such social economic circumstances, maternal factors, access to health services, and level of nutrition.</p> <p>Results</p> <p>The increase in under five mortality rate only happened in western Uganda with the other 3 regions of Uganda (eastern, northern and central) showing a decrease. The changes in U5MR could not be explained by changes in poverty, maternal conditions, level of nutrition, or in access to health and other social services and in the prevalence of HIV among women attending for ante-natal care. All these factors did not reach statistical significance (P > 0.05) using Pearson's correlation coefficient.</p> <p>Conclusion</p> <p>In order to explain these findings, there is need to find something that happened in western Uganda (but not other parts of the country) during the period 1995-2000 and has the potential to change the under five mortality by a big margin. We hypothesize that the increase in under five mortality could be explained by the severe malaria epidemic that occurred in western Uganda (but not other regions) in 1997/98.</p

    Linear low-dose extrapolation for noncancer health effects is the exception, not the rule

    Get PDF
    The nature of the exposure-response relationship has a profound influence on risk analyses. Several arguments have been proffered as to why all exposure-response relationships for both cancer and noncarcinogenic end-points should be assumed to be linear at low doses. We focused on three arguments that have been put forth for noncarcinogens. First, the general “additivity-to-background” argument proposes that if an agent enhances an already existing disease-causing process, then even small exposures increase disease incidence in a linear manner. This only holds if it is related to a specific mode of action that has nonuniversal properties—properties that would not be expected for most noncancer effects. Second, the “heterogeneity in the population” argument states that variations in sensitivity among members ofthe target population tend to “flatten out and linearize” the exposure-response curve, but this actually only tends to broaden, not linearize, the dose-response relationship. Third, it has been argued that a review of epidemiological evidence shows linear or no-threshold effects at low exposures in humans, despite nonlinear exposure-response in the experimental dose range in animal testing for similar endpoints. It is more likely that this is attributable to exposure measurement error rather than a true non-threshold association. Assuming that every chemical is toxic at high exposures and linear at low exposures does not comport to modern-day scientific knowledge of biology. There is no compelling evidence-based justification for a general low-exposure linearity; rather, case-specific mechanistic arguments are needed

    On the nitrogen-induced lattice expansion of a non-stainless austenitic steel, Invar 36Âź, under triode plasma nitriding

    Get PDF
    Chromium, as a strong nitride-forming element, is widely regarded to be an “essential” ingredient for the formation of a nitrogen-expanded lattice in thermochemical nitrogen diffusion treatments of austenitic (stainless) steels. In this article, a proprietary “chrome-free” austenitic iron-nickel alloy, InvarÂź 36 (Fe-36Ni, in wt pct), is characterized after triode plasma nitriding (TPN) treatments at 400 °C to 450 °C and compared with a “stainless” austenitic counterpart RA 330Âź (Fe-19Cr-35Ni, in wt pct) treated under equivalent nitriding conditions. Cr does indeed appear to play a pivotal role in colossal nitrogen supersaturation (and hence anisotropic lattice expansion and superior surface hardening) of austenitic steel under low-temperature (≀ 450 °C) nitrogen diffusion. Nevertheless, this work reveals that nitrogen-induced lattice expansion occurs below the nitride-containing surface layer in Invar 36 alloy after TPN treatment, implying that Cr is not a necessity for the nitrogen-interstitial induced lattice expansion phenomenon to occur, also suggesting another type of ÎłN

    Legislative Documents

    Get PDF
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents
    • 

    corecore