189 research outputs found
Efficacy and safety of bilateral continuous theta burst stimulation (cTBS) for the treatment of chronic tinnitus: design of a three-armed randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Tinnitus, the perception of sound and noise in absence of an auditory stimulus, has been shown to be associated with maladaptive neuronal reorganization and increased activity of the temporoparietal cortex. Transient modulation of tinnitus by repetitive transcranial magnetic stimulation (rTMS) indicated that these areas are critically involved in the pathophysiology of tinnitus and suggested new treatment strategies. However, the therapeutic efficacy of rTMS in tinnitus is still unclear, individual response is variable, and the optimal stimulation area disputable. Recently, continuous theta burst stimulation (cTBS) has been put forward as an effective rTMS protocol for the reduction of pathologically enhanced cortical excitability.</p> <p>Methods</p> <p>48 patients with chronic subjective tinnitus will be included in this randomized, placebo controlled, three-arm trial. The treatment consists of two trains of cTBS applied bilaterally to the secondary auditory cortex, the temporoparietal associaction cortex, or to the lower occiput (sham condition) every working day for four weeks. Primary outcome measure is the change of tinnitus distress as quantified by the Tinnitus Questionnaire (TQ). Secondary outcome measures are tinnitus loudness and annoyance as well as tinnitus change during and after treatment. Audiologic and speech audiometric measurements will be performed to assess potential side effects. The aim of the present trail is to investigate effectiveness and safety of a four weeks cTBS treatment on chronic tinnitus and to compare two areas of stimulation. The results will contribute to clarify the therapeutic capacity of rTMS in tinnitus.</p> <p>Trial registration</p> <p>The trial was registered with the clinical trials register of <url>http://www.clinicaltrials.gov</url> (NCT00518024).</p
Radio detection of cosmic ray air showers with LOPES
In the last few years, radio detection of cosmic ray air showers has
experienced a true renaissance, becoming manifest in a number of new
experiments and simulation efforts. In particular, the LOPES project has
successfully implemented modern interferometric methods to measure the radio
emission from extensive air showers. LOPES has confirmed that the emission is
coherent and of geomagnetic origin, as expected by the geosynchrotron
mechanism, and has demonstrated that a large scale application of the radio
technique has great potential to complement current measurements of ultra-high
energy cosmic rays. We describe the current status, most recent results and
open questions regarding radio detection of cosmic rays and give an overview of
ongoing research and development for an application of the radio technique in
the framework of the Pierre Auger Observatory.Comment: 8 pages; Proceedings of the CRIS2006 conference, Catania, Italy; to
be published in Nuclear Physics B, Proceedings Supplement
Radio emission of highly inclined cosmic ray air showers measured with LOPES
LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a
significant number of cosmic ray air showers with a zenith angle larger than
50, and many of these have very high radio field strengths. The most
inclined event that has been detected with LOPES-10 has a zenith angle of
almost 80. This is proof that the new technique is also applicable
for cosmic ray air showers with high inclinations, which in the case that they
are initiated close to the ground, can be a signature of neutrino events.Our
results indicate that arrays of simple radio antennas can be used for the
detection of highly inclined air showers, which might be triggered by
neutrinos. In addition, we found that the radio pulse height (normalized with
the muon number) for highly inclined events increases with the geomagnetic
angle, which confirms the geomagnetic origin of radio emission in cosmic ray
air showers.Comment: A&A accepte
Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30
When Ultra High Energy Cosmic Rays interact with particles in the Earth's
atmosphere, they produce a shower of secondary particles propagating toward the
ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas
investigating the radio emission from these showers in detail and clarifying if
the technique is useful for largescale applications. LOPES-30 is co-located and
measures in coincidence with the air shower experiment KASCADE-Grande. Status
of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U
The KASCADE-Grande Experiment and the LOPES Project
KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover
a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS
experiment provides comprehensive observations of cosmic rays in the energy
region around the knee. Grande is an array of 700 x 700 sqm equipped with 37
plastic scintillator stations sensitive to measure energy deposits and arrival
times of air shower particles. LOPES is a small radio antenna array to operate
in conjunction with KASCADE-Grande in order to calibrate the radio emission
from cosmic ray air showers. Status and capabilities of the KASCADE-Grande
experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of
the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and
Surrounding
Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation
A significant proportion of the population suffers from tinnitus, a bothersome auditory phantom perception that can severely alter the quality of life. Numerous experimental studies suggests that a maladaptive plasticity of the auditory and limbic cortical areas may underlie tinnitus. Accordingly, repetitive transcranial magnetic stimulation (rTMS) has been repeatedly used with success to reduce tinnitus intensity. The potential of transcranial direct current stimulation (tDCS), another promising method of noninvasive brain stimulation, to relieve tinnitus has not been explored systematically. In a double-blind, placebo-controlled and balanced order design, 20Â patients suffering from chronic untreatable tinnitus were submitted to 20Â minutes of 1Â mA anodal, cathodal and sham tDCS targeting the left temporoparietal area. The primary outcome measure was a change in tinnitus intensity or discomfort assessed with a Visual Analogic Scale (VAS) change-scale immediately after tDCS and 1Â hour later. Compared to sham tDCS, anodal tDCS significantly reduced tinnitus intensity immediately after stimulation; whereas cathodal tDCS failed to do so. The variances of the tinnitus intensity and discomfort VAS change-scales increased dramatically after anodal and cathodal tDCS, whereas they remained virtually unchanged after sham tDCS. Moreover, several patients unexpectedly reported longer-lasting effects (at least several days) such as tinnitus improvement, worsening, or changes in tinnitus features, more frequently after real than sham tDCS. Anodal tDCS is a promising therapeutic tool for modulating tinnitus perception. Moreover, both anodal and cathodal tDCS seem able to alter tinnitus perception and could, thus, be used to trigger plastic changes
Cosmic Ray Energy Spectra and Mass Composition at the Knee - Recent Results from KASCADE -
Recent results from the KASCADE experiment on measurements of cosmic rays in
the energy range of the knee are presented. Emphasis is placed on energy
spectra of individual mass groups as obtained from an two-dimensional unfolding
applied to the reconstructed electron and truncated muon numbers of each
individual EAS. The data show a knee-like structure in the energy spectra of
light primaries (p, He, C) and an increasing dominance of heavy ones (A > 20)
towards higher energies. This basic result is robust against uncertainties of
the applied interaction models QGSJET and SIBYLL which are used in the shower
simulations to analyse the data. Slight differences observed between
experimental data and EAS simulations provide important clues for further
improvements of the interaction models. The data are complemented by new limits
on global anisotropies in the arrival directions of CRs and by upper limits on
point sources. Astrophysical implications for discriminating models of maximum
acceleration energy vs galactic diffusion/drift models of the knee are
discussed based on this data.Comment: 8 pages, 7 figures, to appear in Nuclear Physics B, Proceedings
Supplements, as part of the volume for the CRIS 2004, Cosmic Ray
International Seminar: GZK and Surrounding
Radio emission of highly inclined cosmic ray air showers measured with LOPES
LOPES (LOFAR Prototype Station) is an array of dipole antennas used for
detection of radio emission from air showers. It is co-located and triggered by
the KASCADE (Karlsruhe Shower Core and Array Detector) experiment, which also
provides informations about air shower properties. Even though neither LOPES
nor KASCADE are completely optimized for the detection of highly inclined
events, a significant number of showers with zenith angle larger than 50
have been detected in the radio domain, and many with very high field
strengths. Investigation of inclined showers can give deeper insight into the
nature of primary particles that initiate showers and also into the possibility
that some of detected showers are triggered by neutrinos. In this paper, we
show the example of such an event and present some of the characteristics of
highly inclined showers detected by LOPES
Investigation of the Properties of Galactic Cosmic Rays with the KASCADE-Grande Experiment
The properties of galactic cosmic rays are investigated with the
KASCADE-Grande experiment in the energy range between and
eV. Recent results are discussed. They concern mainly the all-particle energy
spectrum and the elemental composition of cosmic rays.Comment: Proc. RICAP 09, Nucl. Instr. and Meth. in pres
- âŠ